Antigen-Specific CD4+ T Cells Drive Airway Smooth Muscle Proliferation through the Epidermal Growth Factor Receptor.

Author(s):  
S Al Heialy ◽  
B Tolloczko ◽  
K Tsuchiya ◽  
S Siddiqui ◽  
D Ramos-Barbon ◽  
...  
2013 ◽  
Vol 304 (12) ◽  
pp. L853-L862 ◽  
Author(s):  
S. Siddiqui ◽  
M. Novali ◽  
K. Tsuchiya ◽  
N. Hirota ◽  
B. J. Geller ◽  
...  

Allergen challenges induce airway hyperresponsiveness (AHR) and increased airway smooth muscle (ASM) mass in the sensitized rat. Whether the remodeled ASM changes its phenotype is uncertain. We examined, in sensitized Brown Norway rats, the effects of multiple ovalbumin (Ova) challenges on ASM remodeling and phenotype and the role of the epidermal growth factor receptor (EGFR) in these processes. Rats were sensitized with Ova and challenged three times at 5-day intervals with phosphate-buffered saline or Ova and pretreated with the EGFR inhibitor AG-1478 (5 mg/kg) or its vehicle dimethyl sulfoxide. Ova challenges increased ASM mass in all-sized airways and in large airway mRNA expression of smooth muscle myosin heavy chain (sm-MHC), assessed by laser capture. Myosin light chain kinase and the fast myosin isoform SM-B mRNA expressions were not affected. Ova induced AHR to methacholine, and, based on the constant-phase model, this was largely attributable to the small airways and lung derecruitment at 48 h that recovered by 1 wk. The EGFR ligands amphiregulin and heparin-binding epidermal growth factor (HB-EGF) were increased in bronchoalveolar lavage fluid at 48 h after Ova exposure. AG-1478 inhibited AHR and prevented ASM growth. Epithelial gene expression of EGFR, HB-EGF, matrix metalloproteinase (MMP)-9, Gro-α, and transforming growth factor-β was unaffected by Ova challenges. We conclude that EGFR drives remodeling of ASM, which results from repeated Ova challenge. Furthermore, the latter results in excessive small airway and, to a lesser degree, large airway narrowing to methacholine, and large airway gene expression of contractile protein is conserved.


2013 ◽  
Vol 91 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Yessica-Haydee Gomez Sandoval ◽  
Louis-Olivier Lévesque ◽  
Yuan Li ◽  
Madhu B. Anand-Srivastava

We have recently shown that vasoactive peptides such as angiotensin II (Ang II) and endothelin-1 (ET-1) increase the expression of Gi proteins and the proliferation of A10 vascular smooth muscle cells (VSMC) through mitogen-activated protein (MAP) kinase – phosphoinositide (PI) 3-kinase pathways. This study was intended to examine the implication of epidermal growth factor receptor (EGFR) activation in ET-1-induced enhanced expression of Gi proteins and proliferation of A10 VSMC, and to further investigate the underlying mechanisms responsible for these increases. Cell proliferation was determined by [3H]thymidine incorporation and the expression of Gi proteins; extracellular signal-regulated kinases 1 and 2 (ERK1/2) and EGFR phosphorylation was determined by Western blotting. Treatment of A10 VSMC with ET-1 enhanced the expression of Gi proteins, which was attenuated by BQ123 and BQ788, antagonists of ETA and ETB receptor respectively. In addition, ET-1 enhanced the phosphorylation of EGFR in A10 VSMC, which was restored to the control levels by EGFR inhibitor and ETA and ETB receptor antagonists. Furthermore, ET-1 also augmented the proliferation and ERK1/2 phosphorylation of A10 VSMC, which were restored to the control levels by inhibition of EGFR. These data suggest that ET-1 transactivates EGFR, which, through MAP kinase signaling, may contribute to the enhanced expression of Gi proteins and thus increased proliferation of A10 VSMC.


Sign in / Sign up

Export Citation Format

Share Document