Cigarette Smoke Extract Suppresses RIG-I Initiated Innate Immune Responses To Influenza Virus In Human Lung

Author(s):  
Wenxin Wu ◽  
Krupa B. Patel ◽  
J. Leland Booth ◽  
Shuhua Wu ◽  
Marybeth Langer ◽  
...  
2011 ◽  
Vol 300 (6) ◽  
pp. L821-L830 ◽  
Author(s):  
Wenxin Wu ◽  
Krupa B. Patel ◽  
J. Leland Booth ◽  
Wei Zhang ◽  
Jordan P. Metcalf

Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and predisposes subjects to severe respiratory tract infections. Epidemiological studies have shown that cigarette smokers are seven times more likely to contract influenza infection than nonsmokers. The mechanisms underlying this increased susceptibility are poorly characterized. Retinoic acid-inducible gene (RIG)-I is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focused on how cigarette smoke extract (CSE) alters the influenza-induced proinflammatory response and suppresses host antiviral activity in the human lung using a unique lung organ culture model. We first determined that treatment with 2–20% CSE did not induce cytotoxicity as assessed by LDH release. However, CSE treatment inhibited influenza-induced IFN-inducible protein 10 protein and mRNA expression. Induction of the major antiviral cytokine IFN-β mRNA was also decreased by CSE. CSE also blunted viral-mediated RIG-I mRNA and protein expression. Inhibition of viral-mediated RIG-I induction by CSE was prevented by the antioxidants N-acetyl-cysteine and glutathione. These findings show that CSE suppresses antiviral and innate immune responses in influenza virus-infected human lungs through oxidative inhibition of viral-mediated induction of the pattern recognition receptor RIG-I. This immunosuppressive effect of CSE may play a role in the enhanced susceptibility of smokers to serious influenza infection in the lung.


2009 ◽  
Vol 297 (3) ◽  
pp. L530-L537 ◽  
Author(s):  
Philip R. Cooper ◽  
Roberta Lamb ◽  
Nicole D. Day ◽  
Patrick J. Branigan ◽  
Radhika Kajekar ◽  
...  

Respiratory infections exacerbate chronic lung diseases promoting airway inflammation and hyperreactivity. Toll-like receptor 3 (TLR3) recognizes viral double-stranded (ds) RNA such as polyinosinic-polycytidylic acid [poly(I:C)] and stimulates innate immune responses. The objective of this study was to test the hypothesis that dsRNA promotes lung inflammation and alters airway responsiveness to cholinergic and β-adrenergic receptor agonists in human lung slices. Human airway smooth muscle (ASM) was incubated for 24 h in poly(I:C) ± TNFα and a TLR3 monoclonal antibody. Precision-cut lung slices (PCLS; 250-μm thickness) from healthy human lungs containing a small airway were incubated in 0, 10, or 100 μg/ml poly(I:C) for 24 h. Intravital microscopy of lung slices was used to quantify contractile and relaxation responsiveness to carbachol and isoproterenol, respectively. Supernatants of ASM and PCLS were analyzed for cytokine secretion using a 25-multiplex bead assay. In human ASM, poly(I:C) (0.5 μg/ml) increased macrophage inflammatory protein-1α (MIP-1α) and RANTES that was prevented by a TLR3 monoclonal receptor antibody. Incubation of human PCLS with poly(I:C) (10 and 100 μg/ml) had little effect on the log EC50 or maximum drug effect (Emax) for contraction and relaxation in response to carbachol and isoproterenol, respectively. The responsiveness of the same human PCLS to poly(I:C) incubation was confirmed by the robust increase in chemokines and cytokines. In separate experiments, incubation of PCLS with IL-13 or TNFα (100 ng/ml) increased airway sensitivity to carbachol. Poly(I:C) promotes inflammatory mediator release that was not associated with enhanced bronchoconstriction or attenuated bronchodilation in normal healthy human lung slices. Transduction at the TLR3 initiated by dsRNA stimulates downstream innate immune responses.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e21827 ◽  
Author(s):  
Andrew J. Thorley ◽  
Davide Grandolfo ◽  
Eric Lim ◽  
Peter Goldstraw ◽  
Alan Young ◽  
...  

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Aitor Nogales ◽  
Luis Martinez-Sobrido ◽  
David J. Topham ◽  
Marta L. DeDiego

ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.


2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

ABSTRACTThe nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19.IMPORTANCEIn order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


2018 ◽  
Vol 6 (11) ◽  
pp. 846-854 ◽  
Author(s):  
Kenrie P Y Hui ◽  
Rachel H H Ching ◽  
Stan K H Chan ◽  
John M Nicholls ◽  
Norman Sachs ◽  
...  

2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

The nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


Sign in / Sign up

Export Citation Format

Share Document