Glucocorticoid Receptor Beta And Histone Deacetylase 2 Airway Expression Are Increased In Therapy Resistant Asthma

Author(s):  
Claire A. Butler ◽  
Stephen McQuaid ◽  
Timothy Warke ◽  
Gregorz Skibinski ◽  
Michael Stevenson ◽  
...  
2021 ◽  
pp. 1-8
Author(s):  
Valerie Bernays ◽  
Mariusz Pawel Kowalewski ◽  
Ioannis Dedes ◽  
Katrin Kerl French ◽  
Daniel Fink ◽  
...  

<b><i>Background:</i></b> Chronic vulvar dermatitis (CVD) is the most prevalent disease in gynecologic dermatology. The treatment mainly depends on topical glucocorticoids (TGC) but is challenged by insufficient treatment response. On a histological level, the upregulation of the glucocorticoid receptor β (GRβ), an inhibitor of the active glucocorticoid receptor α (GRα), is discussed as mechanism of glucocorticoid insensitivity. <b><i>Objectives:</i></b> To analyze whether the expression of GRβ protein at baseline in keratinocytes may predict responsiveness to TGC in patients with CVD. <b><i>Methods:</i></b> In this retrospective cohort study, clinical and biological data of 25 women with a histological diagnosis of chronic vulvar eczema were analyzed. Randomization was done according to the responsiveness to TGC treatment (responsive vs. nonresponsive). Clinical data and the expression of GRβ in the immunohistochemical stained biopsies were examined. <b><i>Results:</i></b> Fifty-two percent of women with CVD were nonresponsive to TGC. GRβ was abundantly expressed in the cytoplasma of keratinocytes of the vulvar epithelium, but no difference in the level of expression was found among GC responsive and nonresponsive patients in the semiquantitative (<i>p</i> = 0.376) and quantitative analysis (<i>p</i> = 0.894). <b><i>Conclusion:</i></b> GRβ is highly expressed in keratinocytes of the vulvar epidermis affected by CVD, but GRβ expression was not increased in patients nonresponsive to TGC compared to responsive patients. Thus, the failure mechanism in nonresponders still remains to be elucidated.


2003 ◽  
Vol 23 (12) ◽  
pp. 4319-4330 ◽  
Author(s):  
Matthew R. Yudt ◽  
Christine M. Jewell ◽  
Rachelle J. Bienstock ◽  
John A. Cidlowski

ABSTRACT This study molecularly elucidates the basis for the dominant negative mechanism of the glucocorticoid receptor (GR) isoform hGRβ, whose overexpression is associated with human glucocorticoid resistance. Using a series of truncated hGRα mutants and sequential mutagenesis to generate a series of hGRα/β hybrids, we find that the absence of helix 12 is neither necessary nor sufficient for the GR dominant negative phenotype. Moreover, we have localized the dominant negative activity of hGRβ to two residues and found that nuclear localization, in addition to heterodimerization, is a critical feature of the dominant negative activity. Molecular modeling of wild-type and mutant hGRα and hGRβ provides structural insight and a potential physical explanation for the lack of hormone binding and the dominant negative actions of hGRβ.


2005 ◽  
Vol 203 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Kazuhiro Ito ◽  
Satoshi Yamamura ◽  
Sarah Essilfie-Quaye ◽  
Borja Cosio ◽  
Misako Ito ◽  
...  

Glucocorticoids are the most effective antiinflammatory agents for the treatment of chronic inflammatory diseases even though some diseases, such as chronic obstructive pulmonary disease (COPD), are relatively glucocorticoid insensitive. However, the molecular mechanism of this glucocorticoid insensitivity remains uncertain. We show that a defect of glucocorticoid receptor (GR) deacetylation caused by impaired histone deacetylase (HDAC) 2 induces glucocorticoid insensitivity toward nuclear factor (NF)-κB–mediated gene expression. Specific knockdown of HDAC2 by RNA interference resulted in reduced sensitivity to dexamethasone suppression of interleukin 1β–induced granulocyte/macrophage colony-stimulating factor production. Loss of HDAC2 did not reduce GR nuclear translocation, GR binding to glucocorticoid response element (GRE) on DNA, or GR-induced DNA or gene induction but inhibited the association between GR and NF-κB. GR becomes acetylated after ligand binding, and HDAC2-mediated GR deacetylation enables GR binding to the NF-κB complex. Site-directed mutagenesis of K494 and K495 reduced GR acetylation, and the ability to repress NF-κB–dependent gene expression becomes insensitive to histone deacetylase inhibition. In conclusion, we show that overexpression of HDAC2 in glucocorticoid-insensitive alveolar macrophages from patients with COPD is able to restore glucocorticoid sensitivity. Thus, reduction of HDAC2 plays a critical role in glucocorticoid insensitivity in repressing NF-κB–mediated, but not GRE-mediated, gene expression.


2020 ◽  
Vol 17 (4) ◽  
pp. 382-392 ◽  
Author(s):  
Chengliang Hu ◽  
Junkai Hu ◽  
Xianghe Meng ◽  
Hongli Zhang ◽  
Huifan Shen ◽  
...  

Background: Cognitive capacities in Alzheimer’s Disease (AD) are impaired by an epigenetic blockade mediated by histone deacetylase 2 (HDAC2), which prevents the transcription of genes that are important for synaptic plasticity. Objective: Investigation of the functional relationship between cell adhesion molecule L1 and HDAC2 in AD. Methods: Cultures of dissociated cortical and hippocampal neurons from wild-type or L1-deficient mice were treated with Aβ1-42 for 24 h. After removal of Aβ1-42 cells were treated with the recombinant L1 extracellular domain (rL1) for 24 h followed by immunohistochemistry, western blotting, and reverse transcription PCR to evaluate the interaction between L1 and HDAC2. Results: Aβ and HDAC2 protein levels were increased in APPSWE/L1+/- mutant brains compared to APPSWE mutant brains. Administration of the recombinant extracellular domain of L1 to cultured cortical and hippocampal neurons reduced HDAC2 mRNA and protein levels. In parallel, reduced phosphorylation levels of glucocorticoid receptor 1 (GR1), which is implicated in regulating HDAC2 levels, was observed in response to L1 administration. Application of a glucocorticoid receptor inhibitor reduced Aβ-induced GR1 phosphorylation and prevented the increase in HDAC2 levels. HDAC2 protein levels were increased in cultured cortical neurons from L1-deficient mice. This change could be reversed by the administration of the recombinant extracellular domain of L1. Conclusion: Our results suggest that some functionally interdependent activities of L1 and HDAC2 contribute to ameliorating the phenotype of AD by GR1 dephosphorylation, which leads to reduced HDAC2 expression. The combined findings encourage further investigations on the beneficial effects of L1 in the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document