Repair Of DNA Double-Strand Breaks By Non-Homologous End-Joining Is Independent Of Cisplatin-Induced Checkpoint Activation And Downstream Damage Response Pathways In A Non-Small Cell Lung Cancer Cell Culture Model

Author(s):  
Catherine R. Sears ◽  
John J. Turchi
Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2789 ◽  
Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


2019 ◽  
Vol 47 (12) ◽  
pp. 6236-6249 ◽  
Author(s):  
Kirk L West ◽  
Jessica L Kelliher ◽  
Zhanzhan Xu ◽  
Liwei An ◽  
Megan R Reed ◽  
...  

Abstract The tumor suppressor protein 53BP1 plays key roles in response to DNA double-strand breaks (DSBs) by serving as a master scaffold at the damaged chromatin. Current evidence indicates that 53BP1 assembles a cohort of DNA damage response (DDR) factors to distinctly execute its repertoire of DSB responses, including checkpoint activation and non-homologous end joining (NHEJ) repair. Here, we have uncovered LC8 (a.k.a. DYNLL1) as an important 53BP1 effector. We found that LC8 accumulates at laser-induced DNA damage tracks in a 53BP1-dependent manner and requires the canonical H2AX-MDC1-RNF8-RNF168 signal transduction cascade. Accordingly, genetic inactivation of LC8 or its interaction with 53BP1 resulted in checkpoint defects. Importantly, loss of LC8 alleviated the hypersensitivity of BRCA1-depleted cells to ionizing radiation and PARP inhibition, highlighting the 53BP1-LC8 module in counteracting BRCA1-dependent functions in the DDR. Together, these data establish LC8 as an important mediator of a subset of 53BP1-dependent DSB responses.


2020 ◽  
Author(s):  
Kailey Harrell ◽  
Madison Day ◽  
Sarit Smolikove

AbstractDNA double-strand breaks (DSBs) are one of the most dangerous assaults on the genome, and yet their natural and programmed production are inherent to life. When DSBs arise close together (clustered) they are particularly deleterious, and their repair may require an altered form of the DNA damage response. Our understanding of how clustered DSBs are repaired in the germline is unknown. Using UV laser microirradiation, we examine early events in the repair of clustered DSBs in germ cells within whole, live, Caenorhabditis elegans. We use precise temporal resolution to show how the recruitment of MRE-11 to complex damage is regulated, and that clustered DNA damage can recruit proteins from various repair pathways. Abrogation of non-homologous end joining or COM-1 attenuates the recruitment of MRE-11 through distinct mechanisms. The synaptonemal complex plays both positive and negative regulatory roles in these mutant contexts. These findings together indicate that MRE-11 is regulated by modifying its accessibility to chromosomes.


DNA Repair ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 741-749 ◽  
Author(s):  
Kyoko Nakamura ◽  
Wataru Sakai ◽  
Takuo Kawamoto ◽  
Ronan T. Bree ◽  
Noel F. Lowndes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document