Bleomycin - Induced Lung Injury Causes Disturbance Of Tight Junction Of Alveolar Epithelial Cells

Author(s):  
Hiromitsu Ohta ◽  
Shigeki Chiba ◽  
Shu Hisata ◽  
Masahito Ebina ◽  
Toshihiro Nukiwa
2012 ◽  
Vol 302 (2) ◽  
pp. L193-L205 ◽  
Author(s):  
Hiromitsu Ohta ◽  
Shigeki Chiba ◽  
Masahito Ebina ◽  
Mikio Furuse ◽  
Toshihiro Nukiwa

The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.


Cytotherapy ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 108-125 ◽  
Author(s):  
Mehdi Shafa ◽  
Lavinia Iuliana Ionescu ◽  
Arul Vadivel ◽  
Jennifer J.P. Collins ◽  
Liqun Xu ◽  
...  

2018 ◽  
Vol 17 (7) ◽  
pp. 975-983 ◽  
Author(s):  
Luiz Philippe da Silva Sergio ◽  
Andrezza Maria Côrtes Thomé ◽  
Larissa Alexsandra da Silva Neto Trajano ◽  
Andre Luiz Mencalha ◽  
Adenilson de Souza da Fonseca ◽  
...  

Acute lung injury (ALI) is defined as hyperinflammation that could occur from sepsis and lead to pulmonary permeability and edema, making them life-threatening diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Parnpen Viriyavejakul ◽  
Chuchard Punsawad

Pulmonary edema (PE) is a major cause of pulmonary manifestations of severe Plasmodium falciparum malaria and is usually associated with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The sphingosine kinase-1 (SphK-1)/sphingosine-1-phosphate receptor-3 (S1PR-3) pathway has recently been reported to affect the pathogenesis of lung injury, but the expression of these proteins in the lungs of severe P. falciparum malaria patients has not been investigated. The cellular expression of SphK-1 and S1PR-3 in lung tissues from autopsied patients with P. falciparum malaria was investigated using immunohistochemistry (IHC). Lung tissues from patients who died of severe P. falciparum malaria were classified into two groups based on histopathological findings: those with PE (18 patients) and those without PE (non-PE, 19 patients). Ten samples of normal lung tissues were used as the control group. The protein expression levels of SphK-1 and S1PR-3 were significantly upregulated in endothelial cells (ECs), alveolar epithelial cells, and alveolar macrophages (AMs) in the lungs of severe P. falciparum malaria patients with PE compared to those in the non-PE and control groups (all p<0.001). In addition, the SphK-1 and S1PR-3 expression levels were significantly positively correlated in pulmonary ECs (rs=0.922, p<0.001), alveolar epithelial cells (rs=0.995, p<0.001), and AMs (rs=0.969, p<0.001). In conclusion, both the SphK-1 and S1PR-3 proteins were overexpressed in the lung tissues of severe P. falciparum malaria patients with PE, suggesting that SphK-1 and S1PR-3 mediate the pathogenesis of PE in severe malaria. Targeting the regulation of SphK-1 and/or S1PR-3 may be an approach to treat pulmonary complications in severe P. falciparum patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Eriko Fukui ◽  
Soichiro Funaki ◽  
Kenji Kimura ◽  
Toru Momozane ◽  
Atsuomi Kimura ◽  
...  

Chronic obstructive pulmonary disease is a leading cause of mortality globally, with no effective therapy yet established. Adipose tissue-derived stem cells (ADSCs) are useful for ameliorating lung injury in animal models. However, whether ADSCs differentiate into functional cells remains uncertain, and no study has reported on the mechanism by which ADSCs improve lung functionality. Thus, in this study, we examined whether ADSCs differentiate into lung alveolar cells and are able to ameliorate lung injury caused by elastase-induced emphysema in model mice. Here, we induced ADSCs to differentiate into type 2 alveolar epithelial cells in vitro. We demonstrated that ADSCs can differentiate into type 2 alveolar epithelial cells in an elastase-induced emphysematous lung and that ADSCs improve pulmonary function of emphysema model mice, as determined with spirometry and 129Xe MRI. These data revealed a novel function for ADSCs in promoting repair of the damaged lung by direct differentiation into alveolar epithelial cells.


CHEST Journal ◽  
1991 ◽  
Vol 99 (3) ◽  
pp. 25S-27 ◽  
Author(s):  
B. C. Marshall ◽  
B. R. Brown ◽  
M. A. Rothstein ◽  
N. V. Rao ◽  
J. R. Hoidal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document