Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis

2012 ◽  
Vol 302 (2) ◽  
pp. L193-L205 ◽  
Author(s):  
Hiromitsu Ohta ◽  
Shigeki Chiba ◽  
Masahito Ebina ◽  
Mikio Furuse ◽  
Toshihiro Nukiwa

The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.

2003 ◽  
Vol 285 (3) ◽  
pp. L527-L539 ◽  
Author(s):  
Ying Dong Xu ◽  
Jiesong Hua ◽  
Alice Mui ◽  
Robert O'Connor ◽  
Gary Grotendorst ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal fibrotic lung disease. Transforming growth factor (TGF)-β1 is present in a biologically active conformation in the epithelial cells lining lesions with advanced IPF. To determine the role of aberrant expression of biologically active TGF-β1 by alveolar epithelial cells (AECs), the AECs of explanted normal rat lungs were transfected with the TGF-β1 gene using the retrovirus pMX-L-s223,225-TGF-β1. In situ hybridization using a digoxigenin-labeled cDNA of the puromycin resistance gene contained in the pMX demonstrated that pMX-L-s233,225-TGF-β1 was selectively transfected into AECs of the explants. Conditioned media overlying explants obtained 7 days after being treated with pMX-L-s223,225-TGF-β1 contained 14.5 ± 3.15 pg/ml of active TGF-β1. With the use of Masson's trichrome staining of explant sections obtained 14 days after transfection, there were lesions similar to those in IPF, characterized by type II AEC hyperplasia, interstitial thickening, extensive increase in interstitial and subepithelial collagen, an increase in the number of fibroblasts, and areas resembling fibroblast buds. Collagens I, III, IV, and V and fibronectin were increased in explants treated with pMX-L-s223,225-TGF-β1. The findings in the current study suggest that IPF may be a disorder of epithelial cells and not inflammatory cells.


2021 ◽  
Vol 22 (20) ◽  
pp. 11152
Author(s):  
Kai-Wei Chang ◽  
Xiang Zhang ◽  
Shih-Chao Lin ◽  
Yu-Chao Lin ◽  
Chia-Hsiang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Lawei Yang ◽  
Gang Liu ◽  
Xiaomin Li ◽  
Zhengyuan Xia ◽  
Yahong Wang ◽  
...  

Abstract Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by chronic non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers leading to destruction of lung function. Studies have demonstrated that exposure to fine particulate matter (PM2.5) increases the risk of IPF. In order to recover from PM2.5-induced lung injury, alveolar epithelial cells need to be repaired and regenerated to maintain lung function. Type 2 alveolar epithelial cells (AEC2) are stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that RAB6, a RAS family member lowly expressed in lung cancer, inhibited lung cancer stem cell self-renewal, but it is unclear whether or not and how RAB6 may regulate AEC2 cell proliferation and self-renewal in PM2.5-induced pulmonary fibrosis. Here, we demonstrated that knockout of RAB6 inhibited pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, knockout of RAB6 decreased Dickkopf 1(DKK1) autocrine and activated proliferation, self-renewal, and wnt/β-catenin signaling of PM2.5-injured AEC2 cells. RAB6 overexpression increased DKK1 autocrine and inhibited proliferation, self-renewal and wnt/β-catenin signaling in AEC2 cells in vitro. Furthermore, DKK1 inhibitors promoted proliferation, self-renewal and wnt/β-catenin signaling of RAB6 overexpressing AEC2 cells, and attenuated PM2.5-induced pulmonary fibrosis in mice. These data establish RAB6 as a regulator of DKK1 autocrine and wnt/β-catenin signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that RAB6 disruption may promote AEC2 cell proliferation and self-renewal to enhance lung repair following PM2.5 injury.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jung-Hyun Kim ◽  
Geun Ho An ◽  
Ji-Young Kim ◽  
Roya Rasaei ◽  
Woo Jin Kim ◽  
...  

AbstractDetailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.


Thorax ◽  
2020 ◽  
Vol 75 (10) ◽  
pp. 870-881 ◽  
Author(s):  
Julien Guiot ◽  
Maureen Cambier ◽  
Amandine Boeckx ◽  
Monique Henket ◽  
Olivier Nivelles ◽  
...  

IntroductionIdiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology and cure. Recent studies have reported a dysregulation of exosomal microRNAs (miRs) in the IPF context. However, the impact of IPF-related exosomal miRs on the progression of pulmonary fibrosis is unknown.MethodsTwo independent cohorts were enrolled at the ambulatory care polyclinic of Liège University. Exosomes from sputum were obtained from 19 patients with IPF and 23 healthy subjects (HSs) (cohort 1), and the ones from plasma derived from 14 patients with IPF and 14 HSs (cohort 2). Exosomal miR expression was performed by quantitative reverse transcription–PCR. The functional role of exosomal miRs was assessed in vitro by transfecting miR mimics in human alveolar epithelial cells and lung fibroblasts.ResultsExosomal miR analysis showed that miR-142-3p was significantly upregulated in sputum and plasma of patients with IPF (8.06-fold, p<0.0001; 1.64 fold, p=0.008, respectively). Correlation analysis revealed a positive association between exosomal miR-142-3p and the percentage of macrophages from sputum of patients with IPF (r=0.576, p=0.012), suggesting macrophage origin of exosomal miR-142-3p upregulation. The overexpression of miR-142-3p in alveolar epithelial cells and lung fibroblasts was able to reduce the expression of transforming growth factor β receptor 1 (TGFβ-R1) and profibrotic genes. Furthermore, exosomes isolated from macrophages present antifibrotic properties due in part to the repression of TGFβ-R1 by miR-142-3p transfer in target cells.DiscussionOur results suggest that macrophage-derived exosomes may fight against pulmonary fibrosis progression via the delivery of antifibrotic miR-142–3 p to alveolar epithelial cells and lung fibroblasts.


2020 ◽  
Vol 16 (1) ◽  
pp. 85-89
Author(s):  
Mahesh M. Gouda ◽  
Ashwini Prabhu ◽  
Varsha Reddy S.V. ◽  
Rafa Jahan ◽  
Yashodhar P. Bhandary

Background: Bleomycin (BLM) is known to cause DNA damage in the Alveolar Epithelial Cells (AECs). It is reported that BLM is involved in the up-regulation of inflammatory molecules such as neutrophils, macrophages, chemokines and cytokines. The complex underlying mechanism for inflammation mediated progression of lung injury is still unclear. This investigation was designed to understand the molecular mechanisms associated with p53 mediated modulation of Plasminogen Activator Inhibitor-I (PAI-I) expression and its regulation by nano-curcumin formulation. Methods: A549 cells were treated with BLM to cause the cellular damage in vitro and commercially available nano-curcumin formulation was used as an intervention. Cytotoxic effect of nano-curcumin was analyzed using Methyl Thiazolyl Tetrazolium (MTT) assay. Protein expressions were analyzed using western blot to evaluate the p53 mediated changes in PAI-I expression. Results: Nano-curcumin showed cytotoxicity up to 88.5 % at a concentration of 20 μg/ml after 48 h of treatment. BLM exposure to the cells activated the phosphorylation of p53, which in turn increased PAII expression. Nano-curcumin treatment showed a protective role against phosphorylation of p53 and PAI-I expression, which in turn regulated the fibro-proliferative phase of injury induced by bleomycin. Conclusion: Nano-curcumin could be used as an effective intervention to regulate the severity of lung injury, apoptosis of AECs and fibro-proliferation during pulmonary injury.


2009 ◽  
Vol 297 (2) ◽  
pp. L219-L227 ◽  
Author(s):  
Charlie Wray ◽  
Ying Mao ◽  
Jue Pan ◽  
Anita Chandrasena ◽  
Frank Piasta ◽  
...  

Intact alveolar barrier function is associated with better outcomes in acute lung injury patients; however, the regulation of alveolar epithelial paracellular transport during lung injury has not been extensively investigated. This study was undertaken to determine whether changes in tight junction claudin expression affect alveolar epithelial barrier properties and to determine the mechanisms of altered expression. In anesthetized mice exposed to ventilator-induced lung injury, claudin-4 was specifically induced among tight junction structural proteins. Real-time PCR showed an eightfold increase in claudin-4 expression in the lung injury model. To examine the role of this protein in barrier regulation, claudin-4 function was inhibited with small interfering RNA (siRNA) and a blocking peptide derived from the binding domain of Clostridium perfringens enterotoxin (CPEBD). Inhibition of claudin-4 decreased transepithelial electrical resistance but did not alter macromolecule permeability in primary rat and human epithelial cells. In mice, CPEBD decreased air space fluid clearance >33% and resulted in pulmonary edema during moderate tidal volume ventilation that did not induce edema in control peptide-treated mice. In vitro phorbol ester induced a ninefold increase in claudin-4 expression that was dependent on PKC activation and the JNK MAPK pathway. These data establish that changes in alveolar epithelial claudin expression influence paracellular transport, alveolar fluid clearance rates, and susceptibility to pulmonary edema. We hypothesize that increased claudin-4 expression early in acute lung injury represents a mechanism to limit pulmonary edema and that the regulation of alveolar epithelial claudin expression may be a novel target for acute lung injury therapy.


Sign in / Sign up

Export Citation Format

Share Document