Lower Airway Immune Responses in Mechanically Ventilated Children with Viral Lower Respiratory Tract Infections: Implications for Development of Ventilator-Associated Pneumonia

Author(s):  
P.M. Mourani ◽  
B. Wagner ◽  
M. Sontag ◽  
K. Williamson ◽  
T. Carpenter ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
pp. 17-25
Author(s):  
Vladimir A. Rudnov ◽  
Vladimir A. Bagin ◽  
D.V. Belsky ◽  
Maria N. Astafyeva ◽  
N.N. Nevskaya ◽  
...  

Objective. To review a literature published over the past 5 years and our own data on the etiology of lower respiratory tract infections (LRTI), antimicrobial resistance and its relationships between sepsis and choice of appropriate antibiotic therapy. Materials and Methods. National Nosocomial Infections Surveillance (NNIS) criteria were used to diagnose LRTI. A review of the articles regarding LRTI from the Russian and international English language journals published over 6 years was performed. Identification of microorganisms was performed by culture over the period of 2003–2013; since 2014, MALDI-TOF MS method was used for this purpose. Results. Despite the ongoing policy to limit the use of antimicrobial therapy in the ICUs, there is an increase in carbapenemase-producing isolates in the ICUs from 2.2% (2018) to 11.7% (2020, 9 months). Along with the trend to increase in carbapenemase-producing pathogens causing LRTI, their variability is also increasing. In particular, it applies to strains producing carbapenemases OXA-48 or combination of OXA-48 with KPC; with the trend to combined production of carbapenemase beginning at 2019. Conclusions. Carbapenemase producers are becoming more widespread in the ICU settings, including the lower respiratory tract in mechanically ventilated patients. Practitioners didn’t get used to associate VAP with the Sepsis-3 criteria. The changes in etiology include the increased rate of carbapenem-resistant Enterobacterales and non-fermenting Gram-negative bacteria, primarily Acinetobacter spp., in Russia. It’s due to improved quality of respiratory support and increased consumption of carbapenems, tigecycline and polymyxins. Significant increase of OXA-48-producing pathogens is likely to be associated with a poor compliance with temporary guidelines on COVID-19 with regard to antibiotic therapy.


2017 ◽  
Vol 49 (3) ◽  
pp. 1602235 ◽  
Author(s):  
Sabine M.P.J. Prevaes ◽  
Wouter A.A. de Steenhuijsen Piters ◽  
Karin M. de Winter-de Groot ◽  
Hettie M. Janssens ◽  
Gerdien A. Tramper-Stranders ◽  
...  

Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of the upper and lower respiratory niches suggests that the lungs of infants with CF may have their own microbiome that seems seeded by, but is not identical to, the upper respiratory tract microbiome.


2018 ◽  
Vol 51 (3) ◽  
pp. 1701656 ◽  
Author(s):  
Anne-Sophie Moreau ◽  
Ignacio Martin-Loeches ◽  
Pedro Povoa ◽  
Jorge Salluh ◽  
Alejandro Rodriguez ◽  
...  

The aim of this planned analysis of the prospective multinational TAVeM database was to determine the incidence, aetiology and impact on outcome of ventilator-associated lower respiratory tract infections (VA-LRTI) in immunocompromised patients.All patients receiving mechanical ventilation for >48 h were included. Immunocompromised patients (n=663) were compared with non-immunocompromised patients (n=2297).The incidence of VA-LRTI was significantly lower among immunocompromised than among non-immunocompromised patients (16.6% versus 24.2%; sub-hazard ratio 0.65, 95% CI 0.53–0.80; p<0.0001). Similar results were found regarding ventilator-associated tracheobronchitis (7.3% versus 11.6%; sub-hazard ratio 0.61, 95% CI 0.45–0.84; p=0.002) and ventilator-associated pneumonia (9.3% versus 12.7%; sub-hazard ratio 0.72, 95% CI 0.54–0.95; p=0.019). Among patients with VA-LRTI, the rates of multidrug-resistant bacteria (72% versus 59%; p=0.011) and intensive care unit mortality were significantly higher among immunocompromised than among non-immunocompromised patients (54% versus 30%; OR 2.68, 95% CI 1.78–4.02; p<0.0001). In patients with ventilator-associated pneumonia, mortality rates were higher among immunocompromised than among non-immunocompromised patients (64% versus 34%; p<0.001).Incidence of VA-LRTI was significantly lower among immunocompromised patients, but it was associated with a significantly higher mortality rate. Multidrug-resistant pathogens were more frequently found in immunocompromised patients with VA-LRTI.


Sign in / Sign up

Export Citation Format

Share Document