scholarly journals Impact of immunosuppression on incidence, aetiology and outcome of ventilator-associated lower respiratory tract infections

2018 ◽  
Vol 51 (3) ◽  
pp. 1701656 ◽  
Author(s):  
Anne-Sophie Moreau ◽  
Ignacio Martin-Loeches ◽  
Pedro Povoa ◽  
Jorge Salluh ◽  
Alejandro Rodriguez ◽  
...  

The aim of this planned analysis of the prospective multinational TAVeM database was to determine the incidence, aetiology and impact on outcome of ventilator-associated lower respiratory tract infections (VA-LRTI) in immunocompromised patients.All patients receiving mechanical ventilation for >48 h were included. Immunocompromised patients (n=663) were compared with non-immunocompromised patients (n=2297).The incidence of VA-LRTI was significantly lower among immunocompromised than among non-immunocompromised patients (16.6% versus 24.2%; sub-hazard ratio 0.65, 95% CI 0.53–0.80; p<0.0001). Similar results were found regarding ventilator-associated tracheobronchitis (7.3% versus 11.6%; sub-hazard ratio 0.61, 95% CI 0.45–0.84; p=0.002) and ventilator-associated pneumonia (9.3% versus 12.7%; sub-hazard ratio 0.72, 95% CI 0.54–0.95; p=0.019). Among patients with VA-LRTI, the rates of multidrug-resistant bacteria (72% versus 59%; p=0.011) and intensive care unit mortality were significantly higher among immunocompromised than among non-immunocompromised patients (54% versus 30%; OR 2.68, 95% CI 1.78–4.02; p<0.0001). In patients with ventilator-associated pneumonia, mortality rates were higher among immunocompromised than among non-immunocompromised patients (64% versus 34%; p<0.001).Incidence of VA-LRTI was significantly lower among immunocompromised patients, but it was associated with a significantly higher mortality rate. Multidrug-resistant pathogens were more frequently found in immunocompromised patients with VA-LRTI.

2019 ◽  
Vol 10 (2) ◽  
pp. 14-19 ◽  
Author(s):  
Dharm Raj Bhatta ◽  
Deependra Hamal ◽  
Rajani Shrestha ◽  
Supram HS ◽  
Pushpanjali Joshi ◽  
...  

Background: Lower respiratory tract infections are one of the most common infections among the patients in Intensive Care Units (ICUs). Admission in ICUs and use of life supporting devices increase the risk of infection with multidrug resistant pathogens. Aims and Objectives: This study was aimed to determine the prevalence and antibiograms ofthe bacterial pathogens causing lower respiratory tract infectionsamong patients of ICUs. Materials and Methods: A total of 184 specimens from patients admitted in ICUswith lower respiratory tract infections were included in this study. Isolation, identification and antibiotic susceptibility testing of the isolates was performed by standard microbiological techniques. Carbapenamase detection was performed by modified Hodge test method.Detection of metallo beta lactamase (MBL) was tested by imipenem and imipenem/EDTA disc. Detection of Klebsiellapneumoniaecarbapenamase (KPC) was performed by imipenem and imipenem/phenyl boronic acid. Results: Out of 184 samples, 131 showed significant growth of bacterial pathogens. Acinetobacter species (42.6%), Staphylococcus aureus (16.9%) and Pseudomonasaeruginosa(13.9%)were the three most common isolates. Out of 22 imipenem resistant isolates of Acientobacter species, 9 were KPC producer, 4 were MBL producers and 3 isolates were positive for MBL and KPC both. Among the Acinetobacter species, 5.1% isolates were resistant to tigecycline and colistin. One isolate of Pseudomonas aeruginosa was positive for MBL. Conclusions:High prevalence of multidrug resistant bacteria in ICUs was recorded. Gram negative bacilli were predominantly associated with LRTI among ICU patients;Acinetobacterspecies being most common isolate. Detection of carbapenamase among the Acinetobacterand emergence of tigecycline resistancelimits the therapeutic options.Regular monitoring of such resistant isolates would be important for managing infection control in critical units.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 37 ◽  
Author(s):  
Stephanie Noviello ◽  
David Huang

Lower respiratory tract infections (LRTIs) are the leading infectious cause of death and the sixth-leading cause of death overall worldwide. Streptococcus pneumoniae, with more than 90 serotypes, remains the most common identified cause of community-acquired acute bacterial pneumonia. Antibiotics treat LRTIs with a bacterial etiology. With the potential for antibiotic-resistant bacteria, defining the etiology of the LRTI is imperative for appropriate patient treatment. C-reactive protein and procalcitonin are point-of-care tests that may differentiate bacterial versus viral etiologies of LRTIs. Major advancements are currently advancing the ability to make rapid diagnoses and identification of the bacterial etiology of LRTIs, which will continue to support antimicrobial stewardship, and is the focus of this review.


Author(s):  
Gang Chen ◽  
Kailiang Xu ◽  
Fangyuan Sun ◽  
Yuxia Sun ◽  
Ziyuan Kong ◽  
...  

Background. Multidrug-resistant (MDR) bacteria are the main cause of lower respiratory tract infections (LRTIs) with high mortality. The purpose of this study is to identify the risk factors associated with MDR by performing a systematic review and meta-analysis. Methods. PubMed, EMBASE (via Ovid), and Cochrane Library were systematically searched for studies on the risk factors for MDR bacteria in LRTIs as of November 30, 2019. Literature screening, data abstraction, and quality assessment of the eligible studies were performed independently by two researchers. Results. A total of 3,607 articles were retrieved, of which 21 articles representing 20 cohort studies published in English were included after title/abstract and full-text screening. Among the 21 articles involving 7,650 patients and 1,360 MDR organisms, ten reported the risk factors for MDR Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), ten for MDR GNB, and one for MDR GPB. The meta-analysis results suggested that prior antibiotic treatment, inappropriate antibiotic therapy, chronic lung disease, chronic liver disease and cerebral disease, prior MDR and PA infection/colonization, recent hospitalization, longer hospitalization stay, endotracheal tracheostomy and mechanical ventilation, tube feeding, nursing home residence, and higher disease severity score were independent risk factors for MDR bacteria. Conclusions. This review identified fourteen clinical factors that might increase the risk of MDR bacteria in patients with LRTIs. Clinicians could take into account these factors when selecting antibiotics for patients and determine whether coverage for MDR bacteria is required. More well-designed studies are needed to confirm the various risk factors for MDR bacteria in the future.


2016 ◽  
Vol 60 (7) ◽  
pp. 4407-4411 ◽  
Author(s):  
Rodrigo E. Mendes ◽  
David J. Farrell ◽  
Robert K. Flamm ◽  
George H. Talbot ◽  
Zrinka Ivezic-Schoenfeld ◽  
...  

ABSTRACTLefamulin was evaluated against variousStreptococcus pneumoniaeserotypes that were collected from adults with lower respiratory tract infections. Lefamulin exhibited MIC50and MIC90values of 0.12 and 0.25 μg/ml, respectively, against the entire collection (n= 822). Similar results were obtained for lefamulin against each of the most common serotypes as well as against multidrug-resistant isolates and strains that are nonsusceptible to ceftriaxone or erythromycin. These data support the clinical development of lefamulin for the treatment of community-acquired respiratory tract infections.


Sign in / Sign up

Export Citation Format

Share Document