Eucoilinae species (Hymenoptera: Cynipoidea: Figitidae) parasitoids of fruit-infesting dipterous larvae in Brazil: identity, geographical distribution and host associations

Zootaxa ◽  
2003 ◽  
Vol 278 (1) ◽  
pp. 1 ◽  
Author(s):  
JORGE A. GUIMARÃES ◽  
FABIANA E. GALLARDO ◽  
NORMA BEATRIZ DIAZ ◽  
ROBERTO A. ZUCCHI

The Eucoilinae (Cynipoidea, Figitidae) are koinobiont endoparasitoids of dipterous larvae and along with the Opiinae (Braconidae) they are the most important natural enemies of the frugivorous flies (Tephritidae, Lonchaeidae and Drosophilidae). This paper deals with the identity, geographical distribution and host associations of eucoiline species with these biological characteristics in Brazil and provides a key for their identification. Eight species are studied, namely: Lopheucoila anastrephae (Rohwer, 1919), Odontosema anastrephae Borgmeier, 1935; Tropideucoila weldi Costa Lima, 1940, Aganaspis pelleranoi (Brèthes, 1924), A. nordlanderi Wharton, 1998, Trybliographa infuscata Gallardo, Diaz & Uchôa, 2000, Dicerataspis grenadensis Ashmead, 1896 and Leptopilina boulardi (Barbotin, Carton & Kelner-Pillaut, 1979). New geographic records for Brazil are provided for L. anastrephae, T. weldi, D. grenadensis, O. anastrephae, T. infuscata and L. boulardi. Bionomic observations suggest that A. pelleranoi is the species most frequently associated with tephritid flies and probably, the most useful as a biological control agent. Lopheucoila anastrephae is an important parasitoid of lonchaeids and D. grenadensis and L. boulardi are natural enemies of drosophilids.

Author(s):  
T. V. Andrianova

Abstract A description is provided for Stagonospora atriplicis, a potential biological control agent of Atriplex and Chenopodium weeds. Information is included on the disease caused by the organism, its transmission, geographical distribution (Kenya, South Africa, Zimbabwe, Canada, USA, Colombia, Cyprus, Georgia, Kyrgyzstan, Russia, Australia, New Zealand, Austria, Belgium, Bulgaria, Czech Republic, Estonia, France, Germany, UK, Hungary, Italy, Latvia, Romania, Sweden, Ukraine and Hawaii) and hosts (Allenrolfea occidentalis, Atriplex spp., Chenopodium spp. and Syzygium guineense).


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 224
Author(s):  
Wang-Peng Shi ◽  
Xiao-Yu Wang ◽  
Yue Yin ◽  
Yu-Xing Zhang ◽  
Um-e-Hani Rizvi ◽  
...  

Substantial harm to ecosystems from the use of chemical pesticides has led to an increasing interest in the use of biopesticides to control grasshoppers in rangelands, including China. One such potential biopesticide for control of grasshoppers is the fungus Paranosema locustae. In this study, the dynamics of aboveground natural enemies of grasshoppers and arthropod diversity 0–9 years after application of P. locustae were investigated in rangeland in Qinghai Plateau, China. We found that the number of species and of individuals of aboveground natural enemies increased by 17–250% and 40–126%, respectively, after spraying P. locustae, and that the main natural enemies showed three peaks after treatment. The conventional indices of species diversity (H’) and evenness (J’) increased by 11–267% and 13–171%, respectively, after treatment with P. locustae. The results showed the positive effects of P. locustae on aboveground natural enemies and biodiversity in an arthropod community in Chinese rangeland. Paranosema locustae is thought to be a safe biological control agent for grasshopper management in Northwestern China.


2008 ◽  
Vol 98 (3) ◽  
pp. 293-302 ◽  
Author(s):  
Z.Q. Yang ◽  
X.Y. Wang ◽  
J.R. Wei ◽  
H.R. Qu ◽  
X.R. Qiao

AbstractThe fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), is an invasive and important pest in China. Investigations on insect natural enemies have been conducted from 1996 to 1999 in five provinces and one municipality of China in order to select effective species for biological control. Two carabid predators (Coleoptera) and 25 parasitoid species were found, among which 23 were parasitic wasps (Hymenoptera), including five hyperparasitic species and two tachinid flies (Diptera). The two carabids preyed on young larvae inside webs, two braconid wasps parasitized larvae, and 18 parasitoid species attacked the fall webworm during the pupal and/or ‘larval-pupal’ stages. Among these parasitoids, there were one genus and nine species that are new to science and four species new to China, which were described and published by the senior author Yang. The average parasitism rates of fall webworm pupae were 25.8% and 16.1% in the overwintering generation and the first generation (summer generation), respectively. These findings reveal that these natural enemies play an important role in the natural control of the pest. Chouioia cunea Yang (Hymenoptera: Eulophidae), a gregarious pupal endo-parasitoid, was recommended as a promising biological control agent against the fall webworm in China.


2017 ◽  
Vol 108 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Q. Li ◽  
S.V. Triapitsyn ◽  
C. Wang ◽  
W. Zhong ◽  
H.-Y. Hu

AbstractThe flee-weevil Orchestes steppensis Korotyaev (Coleoptera: Curculionidae) is a steppe eastern Palaearctic species, notable as a serious pest of elms (Ulmus spp., Ulmaceae), by feeding on the leaves (adults) or mining them heavily (larvae), especially of Ulmus pumila L. in Xinjiang, China. We have corrected the previous misidentifications of this weevil in China as O. alni (L.) or O. mutabilis Boheman and demonstrated that it is likely to be an invasive species in Xinjiang. Prior to this study, natural enemies of O. steppensis were unknown in Xinjiang. Resulting from field investigation and rearing in the laboratory during 2013–2016, seven parasitoid species were found to be primary and solitary, attacking larval and pupal stages of the host weevil. Pteromalus sp. 2 is the dominant species and also is the most competitive among the seven parasitoids, which could considered to be a perspective biological control agent of O. steppensis. Yet, the current control of this pest by the local natural enemies in Xinjiang is still currently inefficient, even though in 2016 parasitism was about 36% on U. pumila in Urumqi, so the potential for a classical biological control program against it needs to be further investigated, including an assessment of its parasitoids and other natural enemies in the native range of O. steppensis. The presented information on the natural enemies of this weevil can be also important for a potential classical biological control program against it in North America (Canada and USA), where it is a highly damaging and rapidly spreading invasive species.


Author(s):  
Judith H. Myers

The movement of humans around the earth has been associated with an amazing redistribution of a variety of organisms to new continents and exotic islands. The natural biodiversity of native communities is threatened by new invasive species, and many of the most serious insect and weed pests are exotics. Classical biological control is one approach to dealing with nonindigenous species. If introduced species that lack natural enemies are competitively superior in exotic habitats, introducing some of their predators (herbivores), diseases, or parasitoids may reduce their population densities. Thus, the introduction of more exotic species may be necessary to reduce the competitive superiority of nonindigenous pests. The intentional introduction of insects as biological control agents provides an experimental arena in which adaptations and interactions among species may be tested. We can use biological control programs to explore such evolutionary questions as: What characteristics make a natural enemy a successful biological control agent? Does coevolution of herbivores and hosts or predators (parasitoids) and prey result in few species of natural enemies having the potential to be successful biological control agents? Do introduced natural enemies make unexpected host range shifts in new environments? Do exotic species lose their defense against specialized natural enemies after living for many generations without them? If coevolution is a common force in nature, we expect biological control interactions to demonstrate a dynamic interplay between hosts and their natural enemies. In this chapter, I consider biological control introductions to be experiments that might yield evidence on how adaptation molds the interactions between species and their natural enemies. I argue that the best biological control agents will be those to which the target hosts have not evolved resistance. Classical biological control is the movement of natural enemies from a native habitat to an exotic habitat where their host has become a pest. This approach to exotic pests has been practiced since the late 1800s, when Albert Koebele explored the native habitat of the cottony cushion scale, Icrya purchasi, in Australia and introduced Vadalia cardinalis beetles (see below) to control the cottony cushion scale on citrus in California. This control has continued to be a success.


Zootaxa ◽  
2013 ◽  
Vol 3619 (2) ◽  
pp. 154-160 ◽  
Author(s):  
ZHONG-QI YANG ◽  
XIAO-YI WANG ◽  
LIANG-MING CAO ◽  
YAN-LONG TANG ◽  
HUA TANG

Cerchysiella mesosae Yang sp. nov. (Hymenoptera: Chalcidoidea: Encyrtidae), is described from China. It is a gregarious koinobiont endoparasitoid in mature larvae of Mesosa myops (Dalman) (Coleoptera: Cerambycidae), a wood boring pest of many broad-leaved tree species in China, particularly Quercus mongolica and Q. liaotungensis (Fagaceae) in forest areas of northeasternChina. The new species is one of the principal natural enemies of the wood borer and it may have potential as a biological control agent for suppression of the pest.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Peris Wangari Nderitu ◽  
Mattias Jonsson ◽  
Esther Arunga ◽  
Mark Otieno ◽  
John Jamleck Muturi ◽  
...  

Combination of pest management strategies that minimize pesticide use and conserve natural enemies is important for a sustainable environment. Overreliance on synthetic insecticides in the management of Tuta absoluta has led to pesticide resistance leading to difficulties in managing the pest. In this regard, alternative measures need to be put in place to reduce the effects of this pest. The objective of this study was, therefore, to assess the effectiveness of host plant resistance, biological control, and selective insecticides when used in combination, in the management of T. absoluta in tomato production. The study was set up in a greenhouse in a completely randomized design involving two tomato varieties, an insecticide (chlorantraniliprole), and a biological control agent(Macrolophus pygmaeus), applied singly or in combination. Data were collected on T. absoluta damage from the lower, intermediate, and upper leaves. The results from this study show that a combination of insecticide with a moderately resistant variety had a significantly lower T. absoluta damage as compared with a susceptible variety combined with an insecticide. However, the moderately resistant variety when combined with insecticide showed no effect when the biological control agent was added. The susceptible variety significantly reduced T. absoluta damage when combined with the biological control agent. These results indicate that treatment combinations in insect pest management can be utilized. The present study results indicate that using a moderately resistant variety (Riogrande VF) in combination with the insecticide chlorantraniliprole (Coragen®) and a susceptible variety (Pesa F1) in combination with the biological control agent (M. pygmaeus) can improve T. absoluta management. Under good habitat management, the susceptible variety will perform equally as the moderately resistant variety due to suppression of the T. absoluta populations by natural enemies. These findings show the importance of environmental conservation both by enhancing natural enemy abundance and use of selective insecticide in the management of T. absoluta in tomato production. Combinations in this present study are likely to reduce insecticide doses, thereby reducing the cost of production and enhancing environmental compatibility with natural enemies.


Check List ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 595-600
Author(s):  
Priscila Andre Sanz-Veiga ◽  
Silvana Lampert ◽  
Marcoandre Savaris

The geographical distribution of the weevil Cissoanthonomus tuberculipennis Hustache, 1939 is extended in Brazil, with new records from the municipalities of Charqueada and Piracicaba, state of São Paulo. These are the second and third records of C. tuberculipennis in Brazil. The specimens were collected from infested fruits of Cardiospermum grandiflorum Sw. (Sapindaceae) in riparian forests along watercourses.


Sign in / Sign up

Export Citation Format

Share Document