scholarly journals Hydromagnetic Stagnation Point Flow over a Porous Stretching Surface in the Presence of Radiation and Viscous Dissipation

2014 ◽  
Vol 3 (5) ◽  
pp. 191 ◽  
Author(s):  
Emmanuel Maurice Arthur
Engineering ◽  
2010 ◽  
Vol 02 (04) ◽  
pp. 299-305 ◽  
Author(s):  
Tapas R. Mahapatra ◽  
Samir K. Nandy ◽  
Anadi S. Gupta

2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
M. Mustafa ◽  
T. Hayat ◽  
Awatif A. Hendi

This communication studies the effect of melting heat transfer on the stagnation-point flow of a Jeffrey fluid over a stretching sheet. Heat transfer analysis is carried out in the presence of viscous dissipation. The arising differential system has been solved by the homotopy analysis method (HAM). The results indicate an increase in the velocity and the boundary layer thickness with an increase in the values of the elastic parameter (Deborah number) for a Jeffrey fluid which are opposite to those accounted for in the literature for the other subclasses of rate type fluids. Furthermore, an increase in the melting process corresponds to an increase in the velocity and a decrease in the temperature. A comparative study between the current computations and the previous studies is also presented in a limiting sense.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

Abstract In this paper, the rate of heat transfer of the steady MHD stagnation point flow of Casson fluid on the shrinking/stretching surface has been investigated with the effect of thermal radiation and viscous dissipation. The governing partial differential equations are first transformed into the ordinary (similarity) differential equations. The obtained system of equations is converted from boundary value problems (BVPs) to initial value problems (IVPs) with the help of the shooting method which then solved by the RK method with help of maple software. Furthermore, the three-stage Labatto III-A method is applied to perform stability analysis with the help of a bvp4c solver in MATLAB. Current outcomes contradict numerically with published results and found inastounding agreements. The results reveal that there exist dual solutions in both shrinking and stretching surfaces. Furthermore, the temperature increases when thermal radiation, Eckert number, and magnetic number are increased. Signs of the smallest eigenvalue reveal that only the first solution is stable and can be realizable physically.


Sign in / Sign up

Export Citation Format

Share Document