scholarly journals Effect of Alternate Wetting and Drying (AWD) Irrigation for Boro Rice Cultivation in Bangladesh

2014 ◽  
Vol 3 (2) ◽  
pp. 86 ◽  
Author(s):  
Md. Redwanur Rahman
2021 ◽  
Vol 58 (1) ◽  
pp. 33-42
Author(s):  
M Jeya Bharathi ◽  
M Raju ◽  
S Elamathi

Rice is a prime food crop for Asian countries. Wet land rice cultivation contributes maximum grain yield than dry land rice. Cauvery delta is a predominant area for rice cultivation in Tamil Nadu. Green algae growth during Kuruvai (June -August) season is a serious problem in wet land rice. These algae growth create anaerobic condition and prevent rice root respiration. The entire rice root was uprooted and floated on the stagnated water during initial stage. There is no preliminary study for green algae control in rice field. Soil and water samples were collected and analyzed for the nature of occurrence. Laboratory and field experiments were conducted to find out the remedial measures. The results of soil and water sample analysis showed that use of bore well water and dumping of phosphatic fertilizers leads to salt accumulation which favours the green algal growth. The results of the laboratory experiment revealed that the CuSO4 londox power, propiconazole and hexaconazole showed moderate inhibition on 5th day after treatment. The findings from field experiment indicated that use of conoweeder, alternate wetting and drying and CuSo4 drenching @ of 2.5 kg/ha when green algae appearance has just noticed or 5.0 kg/ha when severe growth occurred was effective in managing the green algae. Among all measures, alternate wetting and drying is the best management practices. CuSO4 drenching reduces around 70% of the growth. Even though CuSO4 react negatively with algae growth, soil pH changes and salt concentration play a major role on the CuSO4 action towards green algae. In order to maintain soil health condition, biofertilizer application, crop rotation, green manure trampling to be practised to recover the soil from alkaline pH, removal of accumulated salt and to control the algae growth using CuSO4.


2021 ◽  
Vol 258 ◽  
pp. 107164
Author(s):  
Maite Martínez-Eixarch ◽  
Carles Alcaraz ◽  
Mercè Guàrdia ◽  
Mar Català-Forner ◽  
Andrea Bertomeu ◽  
...  

1970 ◽  
Vol 6 (2) ◽  
pp. 409-414 ◽  
Author(s):  
MMH Oliver ◽  
MSU Talukder ◽  
M Ahmed

A field experiment was conducted at the Bangladesh Agricultural University (BAU) to find out possible effects of alternate wetting and drying irrigation (AWDI) on the yield, water use and water use efficiency (WUE) of Boro rice. The experimental layout was furnitured using split-plot design (SPD) with two modern varieties (MV) of rice viz. BRRIdhan 28 and BRRIdhan 29, which received four irrigation treatments randomly and was replicated thrice. The treatments ranged from continuous submergence (T1) of the field to a number of delayed irrigations (T2, T3 and T4) denoting application of 5 cm irrigation water when water level in the perforated PVC pipe fell 10, 20 and 30 cm below ground level (G.L.), respectively. The study revealed that treatment T1 attributed by the highest total water use (122.2 cm) and the lowest WUE (58.53 kg/ha/cm) produced the highest grain yield (6.86 t/ha). Treatment T2, on the contrary, gave the second highest yield (6.58 t/ha) and consequently the second highest WUE (69.48 kg/ha/cm) indicating quite a large water saving (15 cm) compared to treatment T1. The yields in treatments T3 (6.27 t/ha) and T4 (5.86 t/ha) were significantly lower at 1% level of significance compared to that of treatment T1. No significant effect was found either for the treatment or for the varieties on the number of effective and total tillers hill-1 nor did they affect 1000 grain weight. Reduced plant height, no. of effective tillers hill-1, grain yield, straw yield, biological yield and harvest index were found with the increasing water stress. Key words: Alternate wetting and drying irrigation; Boro rice; Yield; Water use efficiency DOI: 10.3329/jbau.v6i2.4841 J. Bangladesh Agril. Univ. 6(2): 409-414, 2008


2018 ◽  
Vol 16 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Mrinmoy Guha Neogi ◽  
AKM Salah Uddin ◽  
M Taj Uddin ◽  
Muhammad Abdul Hamid

Massive extraction of groundwater for boro rice is the main cause of declining groundwater tables, especially in Rangpur Division, which is now a burning issue at the national level. It is now scientifically proven that rice is not a water-loving plant, but rather a water-tolerant plant. AWD can save water and energy, where both farmers and pump-owners can save around 30% of their irrigation water requirements. In Bangladesh around 4.8 million hectares of land are brought under irrigated boro rice where AWD technology can be utilized. With introduction of AWD technology, a savings of electricity costs equivalent to 5 billion Tk. or fuel cost equivalent to 7 billion Tk. will be incurred at the national level. Hence, the implementation of AWD technology will have major impacts at the farm and national levels, which can reduce irrigation cost significantly, thus saving foreign currency, as well as reducing excessive use of ground water.J. Bangladesh Agril. Univ. 16(1): 1-4, April 2018


Sign in / Sign up

Export Citation Format

Share Document