Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season

2019 ◽  
Vol 223 ◽  
pp. 980-988 ◽  
Author(s):  
Patikorn Sriphirom ◽  
Amnat Chidthaisong ◽  
Sirintornthep Towprayoon
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yunbo Zhang ◽  
Qiyuan Tang ◽  
Shaobing Peng ◽  
Danying Xing ◽  
Jianquan Qin ◽  
...  

One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology.


2021 ◽  
Vol 58 (1) ◽  
pp. 33-42
Author(s):  
M Jeya Bharathi ◽  
M Raju ◽  
S Elamathi

Rice is a prime food crop for Asian countries. Wet land rice cultivation contributes maximum grain yield than dry land rice. Cauvery delta is a predominant area for rice cultivation in Tamil Nadu. Green algae growth during Kuruvai (June -August) season is a serious problem in wet land rice. These algae growth create anaerobic condition and prevent rice root respiration. The entire rice root was uprooted and floated on the stagnated water during initial stage. There is no preliminary study for green algae control in rice field. Soil and water samples were collected and analyzed for the nature of occurrence. Laboratory and field experiments were conducted to find out the remedial measures. The results of soil and water sample analysis showed that use of bore well water and dumping of phosphatic fertilizers leads to salt accumulation which favours the green algal growth. The results of the laboratory experiment revealed that the CuSO4 londox power, propiconazole and hexaconazole showed moderate inhibition on 5th day after treatment. The findings from field experiment indicated that use of conoweeder, alternate wetting and drying and CuSo4 drenching @ of 2.5 kg/ha when green algae appearance has just noticed or 5.0 kg/ha when severe growth occurred was effective in managing the green algae. Among all measures, alternate wetting and drying is the best management practices. CuSO4 drenching reduces around 70% of the growth. Even though CuSO4 react negatively with algae growth, soil pH changes and salt concentration play a major role on the CuSO4 action towards green algae. In order to maintain soil health condition, biofertilizer application, crop rotation, green manure trampling to be practised to recover the soil from alkaline pH, removal of accumulated salt and to control the algae growth using CuSO4.


2018 ◽  
Vol 54 (2A) ◽  
pp. 91
Author(s):  
Duong Mai Linh

Rice cultivation causes the emission of CH4 consequenced to the global warming. Reduction of irrigation in rice cultivation is not only saving water resources but also reducing greenhouse gases emission. The objectives of this study was to determine impacts of water management on the emission of CH4 and rice yield. Experiment was conducted in field conditions in An Giang province, Viet Nam with three treatments as continuous flooding (CF), An Giang Alternative Wetting and Drying (AAWD) which is mostly applied by farmers in An Giang province-Viet Nam, and Alternate Wetting and Drying (AWD). Water levels in the field +5 cm, ± 5 cm and -15 cm were controlled higher, fluctuated and lower than soil surface, respectively for CF, AAWD and AWD. CH4 emission determined every week during 13 weeks of the experiment. Rice yield was determined in 1 m2 at the end of the experiment. The results showed that AWD and AAWD, respectively decreased 78.7 % (p < 0.05) and 6.8 % (p > 0.05) CH4 emission compared to the CF 11.9 mg CH4/m2/h. The rice yield of CF was 6.32 ton/ha lower than AAWD 7.8 ton/ha (p < 0.05) but not different with AWD 6.67 ton/ha. AAWD had higher rice yield but same emission than the CF. Farmers in An Giang province should consider application of AWD in rice cultivation in term of saving water and reduction of CH4 emission.


2019 ◽  
Vol 16 (2) ◽  
pp. 383-408 ◽  
Author(s):  
Elizabeth Verhoeven ◽  
Matti Barthel ◽  
Longfei Yu ◽  
Luisella Celi ◽  
Daniel Said-Pullicino ◽  
...  

Abstract. Soil moisture strongly affects the balance between nitrification, denitrification and N2O reduction and therefore the nitrogen (N) efficiency and N losses in agricultural systems. In rice systems, there is a need to improve alternative water management practices, which are designed to save water and reduce methane emissions but may increase N2O and decrease nitrogen use efficiency. In a field experiment with three water management treatments, we measured N2O isotope ratios of emitted and pore air N2O (δ15N, δ18O and site preference, SP) over the course of 6 weeks in the early rice growing season. Isotope ratio measurements were coupled with simultaneous measurements of pore water NO3-, NH4+, dissolved organic carbon (DOC), water-filled pore space (WFPS) and soil redox potential (Eh) at three soil depths. We then used the relationship between SP × δ18O-N2O and SP × δ15N-N2O in simple two end-member mixing models to evaluate the contribution of nitrification, denitrification and fungal denitrification to total N2O emissions and to estimate N2O reduction rates. N2O emissions were higher in a dry-seeded + alternate wetting and drying (DS-AWD) treatment relative to water-seeded + alternate wetting and drying (WS-AWD) and water-seeded + conventional flooding (WS-FLD) treatments. In the DS-AWD treatment the highest emissions were associated with a high contribution from denitrification and a decrease in N2O reduction, while in the WS treatments, the highest emissions occurred when contributions from denitrification/nitrifier denitrification and nitrification/fungal denitrification were more equal. Modeled denitrification rates appeared to be tightly linked to nitrification and NO3- availability in all treatments; thus, water management affected the rate of denitrification and N2O reduction by controlling the substrate availability for each process (NO3- and N2O), likely through changes in mineralization and nitrification rates. Our model estimates of mean N2O reduction rates match well those observed in 15N fertilizer labeling studies in rice systems and show promise for the use of dual isotope ratio mixing models to estimate N2 losses.


Sign in / Sign up

Export Citation Format

Share Document