scholarly journals Finite Element Analysis of Reinforced Concrete Interior Beam Column Connection Subjected to Lateral Loading

2020 ◽  
Vol 8 (2) ◽  
pp. 20
Author(s):  
Gemechu Abdissa
2020 ◽  
Vol 5 (6) ◽  
pp. 689-697
Author(s):  
Gemechu Abdissa Diro ◽  
Worku Feromsa Kabeta

Beam column connection is the most critical zone in a reinforced concrete frame. The strength of connection affects the overall behavior and performance of RC framed structures subjected to lateral load and axial loads. The study of critical parameters that affects the overall joint performances and response of the structure is important. Recent developments in computer technology have made possible the use of Finite element method for 3D modeling and analysis of reinforced concrete structures. Nonlinear finite element analysis of reinforced concrete exterior beam column connection subjected to lateral loading was performed in order to investigate joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern using ABAQUS software. A 3D solid shape model using 3D stress hexahedral element type (C3D8R) was implemented to simulate concrete behavior. Wire shape model with truss shape elements (T3D2) was used to simulate reinforcement’s behavior. The concrete and reinforcement bars were coupled using the embedded modeling technique. In order to define nonlinear behavior of concrete material, the concrete damage plasticity (CDP) was applied to the numerical model as a distributed plasticity over the whole geometry. The study was to investigate the most influential parameters affecting joint shear failure due to column axial load, beam longitudinal reinforcement ratio, joint panel geometry and concrete compressive strength. The Finite Element Model (FEM) was verified against experimental test of exterior RC beam column connection subjected to lateral loading. The model showed good comparison with test results in terms of load-displacement relation, cracking pattern and joint shear failure modes. The FEA clarified that the main influential parameter for predicting joint shear failure was concrete compressive strength.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


Sign in / Sign up

Export Citation Format

Share Document