scholarly journals Finite Element Analysis of Key Influence Parameters in Reinforced Concrete Exterior Beam Column Connection subjected to Lateral Loading

2020 ◽  
Vol 5 (6) ◽  
pp. 689-697
Author(s):  
Gemechu Abdissa Diro ◽  
Worku Feromsa Kabeta

Beam column connection is the most critical zone in a reinforced concrete frame. The strength of connection affects the overall behavior and performance of RC framed structures subjected to lateral load and axial loads. The study of critical parameters that affects the overall joint performances and response of the structure is important. Recent developments in computer technology have made possible the use of Finite element method for 3D modeling and analysis of reinforced concrete structures. Nonlinear finite element analysis of reinforced concrete exterior beam column connection subjected to lateral loading was performed in order to investigate joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern using ABAQUS software. A 3D solid shape model using 3D stress hexahedral element type (C3D8R) was implemented to simulate concrete behavior. Wire shape model with truss shape elements (T3D2) was used to simulate reinforcement’s behavior. The concrete and reinforcement bars were coupled using the embedded modeling technique. In order to define nonlinear behavior of concrete material, the concrete damage plasticity (CDP) was applied to the numerical model as a distributed plasticity over the whole geometry. The study was to investigate the most influential parameters affecting joint shear failure due to column axial load, beam longitudinal reinforcement ratio, joint panel geometry and concrete compressive strength. The Finite Element Model (FEM) was verified against experimental test of exterior RC beam column connection subjected to lateral loading. The model showed good comparison with test results in terms of load-displacement relation, cracking pattern and joint shear failure modes. The FEA clarified that the main influential parameter for predicting joint shear failure was concrete compressive strength.

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1578
Author(s):  
Sławomir Dudziak

The paper concerns the non-linear finite element analysis (NLFEA) of Reinforced Concrete (RC) structures for engineering applications. The required level of complexity of constitutive models for such analysis was discussed and non-linear elastic models combined with the smeared cracking approach proved to be efficient. A new constitutive hypoelastic-brittle model of concrete based on these assumptions was proposed. Moreover, a method including the tension stiffening effect (TS) was developed. This phenomenon is connected with the bond properties between concrete and steel and, in some situations, has significant influence on the deflections of RC structures. It is often neglected by or included in the constitutive model of concrete. In the paper, an alternative approach was presented, in which this phenomenon is taken into account by generalising the material model of reinforcing steel. This approach is consistent with modern design standards and has solid physical foundations. The proposed models were implemented in the Abaqus code via UMAT user’s procedure coded in FORTRAN. Model verification and validation were presented in four case studies, concerning: a Willam’s test (examination on material point level), a beam with bending failure, and two beams with shear failure (with and without stirrups). The obtained results were compared with experimental outcomes and numerical results obtained by other researchers. The presented approach enables the accurate prediction not only of load capacity but of structural deformability, due to the precise description of TS. Thus, it promises to be a useful engineering tool.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1326-1329
Author(s):  
Shu Dian Yao ◽  
Fu Ma

The finite element analysis software-ANYSIS is used to calculate and analyze the deformation and mechanical performance of the abnormal joints core zone of variable beam shaped (reinforced concrete beam) under the positive and negative symmetric loads (simulate earthquake loads) . With the method of control variables, multiple finite element analysis models are set up and the focus is to explore the crack development, stress distribution and failure pattern in different stages. The compared conclusion shows that the shear failure of small joint core is the key to the whole joints core area for variable beam shaped.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document