scholarly journals The Hidden Quantum Entanglement Roots of E = mc2 and Its Genesis to E = (mc2/22) Plus mc2 (21/22) Confirming Einstein’s Mass-Energy Formula

Author(s):  
Mohamed S. El Naschie
2014 ◽  
Vol 31 ◽  
pp. 1460279 ◽  
Author(s):  
Jian Wang ◽  

This is a report at the conference Physics In Collision 2013. The experimental results on physics of diboson production are reviewed. The measurements use pp collision at the LHC with center-of-mass energy [Formula: see text] and 8 TeV, and [Formula: see text] collision at the Tevatron with [Formula: see text]. These include measurements of Wγ, Zγ, WW, WZ and ZZ production. The results are compared with Standard Model predictions, and are interpreted in terms of constraints on charged and neutral anomalous triple gauge couplings.


2019 ◽  
Vol 34 (18) ◽  
pp. 1950093
Author(s):  
Guang Yang ◽  
Bingfang Yang ◽  
Biaofeng Hou ◽  
Hengheng Bi

In the framework of the littlest Higgs Model with T-parity (LHT), we investigate the single production of vector-like top partner [Formula: see text] decaying to [Formula: see text] in the leptonic channel at the high energy [Formula: see text] collision. We utilize the polarized electron beam and photon beam to enhance the signal and propose a search strategy by performing a detector simulation. On the basis of the current limits from the precision electroweak data and Higgs data, we find that the top partner mass can be excluded up to 1350 (1380) GeV with integrated luminosity of 1000 fb[Formula: see text] and 1400 (1470) GeV with integrated luminosity of 3000 fb[Formula: see text] for the [Formula: see text] TeV (2.4 TeV) at the [Formula: see text] level. If the center-of-mass energy can be improved to 3.0 TeV, the limits on the top partner mass will reach 1450 (1550) GeV with integrated luminosities of 1000 (3000) fb[Formula: see text].


2005 ◽  
Vol 14 (04) ◽  
pp. 579-586
Author(s):  
FU SONG ◽  
FU-HU LIU

The pseudorapidity distributions of charged particles produced in [Formula: see text] annihilations and AA collisions at high energies are investigated by using a revised thermalized cylinder model. The Monte Carlo calculated results are compared and found to be in good agreement with the experimental data of [Formula: see text] annihilations at center-of-mass energy [Formula: see text], 546, 200, and 53 GeV, Au–Au collisions at [Formula: see text] and 130 A GeV, and Pb–Pb collisions at [Formula: see text].


2016 ◽  
Vol 31 (33) ◽  
pp. 1644005 ◽  
Author(s):  
Zhen Liu

I summarize our recent works on using differential observables to explore the physics potential of future [Formula: see text] colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the [Formula: see text] channel at future circular [Formula: see text] colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy [Formula: see text] GeV and 5 (30) ab[Formula: see text] integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. We also discuss the possibility of using [Formula: see text]-fusion at [Formula: see text] machines at different energies to probe new operators.


Author(s):  
Qing Li

An approximate calculation of the spatial characteristics on finite range is required, so one quantitative continuum represents the accumulation of infinite great quantities is artificially divided it into smaller and camparable parts in which calculus operation can be applied .This operation is defined as Theorem 1 in which infinity is not involved, there is a camparable finity is constantly (forever) approaching and not reaching infinity, and only staying within a finite range. Theorem 1 can exist in this paper as a new mathematical basis for physics. Because the essence of all physical quantities is size comparison, and the size comparison relation of matter can only be space/time, so relation formula space/time is the only expression of the concept of matter, all physical quantities are applicable to this expression, each different physical quantity is a multi-dimensional representation of this expression. A new mass energy formula is aslo derived from this paper.


1989 ◽  
Vol 21 (6) ◽  
pp. 585-612 ◽  
Author(s):  
J. Devitt ◽  
P. S. Florides
Keyword(s):  

2014 ◽  
Vol 29 (24) ◽  
pp. 1430056 ◽  
Author(s):  
Jian Wang ◽  

The experimental results on physics of diboson production are reviewed. The measurements use pp collision at the LHC with center-of-mass energy [Formula: see text] and 8 TeV, and [Formula: see text] collision at the Tevatron with [Formula: see text]. These include measurements of Wγ, Zγ, WW, WZ and ZZ production. The results are compared with Standard Model predictions, and are interpreted in terms of constraints on charged and neutral anomalous triple gauge couplings.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050049
Author(s):  
Rashid Khan

Different event generators are used to simulate proton–proton collisions at the center-of-mass energy [Formula: see text] TeV to predict the forward neutron energy spectra. The predictions from different models — DPMJETIII, Sibyll2.3c, QGSJETII-04 and EPOS-LHC — are compared with experimental data from the LHCf detector in three different regions of pseudorapidity — [Formula: see text], [Formula: see text] and [Formula: see text]. Although, the models follow tracks of the experimental data, there is a clear mismatch between the models and experimental data, and among the models as well.


2021 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Qing Li

An approximate calculation of the spatial characteristics on finite range is required, so one quantitative continuum represents the accumulation of infinite great quantities is artificially divided it into smaller and camparable parts in which calculus operation can be applied .This operation is defined as Theorem 1 in which infinity is not involved, there is a camparable finity is constantly (forever) approaching and not reaching infinity, and only staying within a finite range. Theorem 1 can exist in this paper as a new mathematical basis for physics. Because the essence of all physical quantities is size comparison, and the size comparison relation of matter can only be space/time, so relation formula space/time is the only expression of the concept of matter, all physical quantities are applicable to this expression, each different physical quantity is a multi-dimensional representation of this expression. A new mass energy formula is aslo derived from this paper.


Sign in / Sign up

Export Citation Format

Share Document