scholarly journals A New Method for Calculating Energy of Matter

Author(s):  
Qing Li

An approximate calculation of the spatial characteristics on finite range is required, so one quantitative continuum represents the accumulation of infinite great quantities is artificially divided it into smaller and camparable parts in which calculus operation can be applied .This operation is defined as Theorem 1 in which infinity is not involved, there is a camparable finity is constantly (forever) approaching and not reaching infinity, and only staying within a finite range. Theorem 1 can exist in this paper as a new mathematical basis for physics. Because the essence of all physical quantities is size comparison, and the size comparison relation of matter can only be space/time, so relation formula space/time is the only expression of the concept of matter, all physical quantities are applicable to this expression, each different physical quantity is a multi-dimensional representation of this expression. A new mass energy formula is aslo derived from this paper.

2021 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Qing Li

An approximate calculation of the spatial characteristics on finite range is required, so one quantitative continuum represents the accumulation of infinite great quantities is artificially divided it into smaller and camparable parts in which calculus operation can be applied .This operation is defined as Theorem 1 in which infinity is not involved, there is a camparable finity is constantly (forever) approaching and not reaching infinity, and only staying within a finite range. Theorem 1 can exist in this paper as a new mathematical basis for physics. Because the essence of all physical quantities is size comparison, and the size comparison relation of matter can only be space/time, so relation formula space/time is the only expression of the concept of matter, all physical quantities are applicable to this expression, each different physical quantity is a multi-dimensional representation of this expression. A new mass energy formula is aslo derived from this paper.


2014 ◽  
Vol 31 ◽  
pp. 1460279 ◽  
Author(s):  
Jian Wang ◽  

This is a report at the conference Physics In Collision 2013. The experimental results on physics of diboson production are reviewed. The measurements use pp collision at the LHC with center-of-mass energy [Formula: see text] and 8 TeV, and [Formula: see text] collision at the Tevatron with [Formula: see text]. These include measurements of Wγ, Zγ, WW, WZ and ZZ production. The results are compared with Standard Model predictions, and are interpreted in terms of constraints on charged and neutral anomalous triple gauge couplings.


2009 ◽  
Vol 20 (01) ◽  
pp. 45-76
Author(s):  
MAGNUS B. LANDSTAD ◽  
NADIA S. LARSEN

For a Hecke pair (G, H) and a finite-dimensional representation σ of H on Vσ with finite range, we consider a generalized Hecke algebra [Formula: see text], which we study by embedding the given Hecke pair in a Schlichting completion (Gσ, Hσ) that comes equipped with a continuous extension σ of Hσ. There is a (non-full) projection [Formula: see text] such that [Formula: see text] is isomorphic to [Formula: see text]. We study the structure and properties of C*-completions of the generalized Hecke algebra arising from this corner realisation, and via Morita–Fell–Rieffel equivalence, we identify, in some cases explicitly, the resulting proper ideals of [Formula: see text]. By letting σ vary, we can compare these ideals. The main focus is on the case with dim σ = 1 and applications include ax + b-groups and the Heisenberg group.


1976 ◽  
Vol 46 (9) ◽  
pp. 623-628 ◽  
Author(s):  
George G. Stoner

Le Système International d'Unités (officially designated SI in all languages) provides a logical, interconnected framework for measurements in commerce, industry, and science, including the textile and allied fields. SI is based on only nine elemental units. Seventeen important derived units have special names. Any number of derived units is possible to meet particular needs. SI has only one unit for each type of physical quantity. Prefixes cover a range of 1036 to form multiples and submultiples. SI has explicitly distinct units for mass (the kilogram) and force (the newton). Numerous older units of pressure, energy, and power are superseded by the pascal, the joule, and the watt, respectively. Each equation defining a derived unit contains only the number 1 as the numerical factor. SI has salient advantages because it is a system of units coherent with respect to the system of physical quantities and the equations relating them.


2018 ◽  
Vol 226 ◽  
pp. 04012
Author(s):  
Boris D. Khastsaev ◽  
Larisa M. Dedegkaeva ◽  
Maksim P. Maslakov

The possibility of designing an electronic device for protection and diagnostics of electric drives with improved characteristics is considered. The technique and algorithm of design of similar devices, the structural scheme of the device constructed on their basis are offered. To improve the characteristics of the device of protection and diagnostics of electric drives in the work it is proposed to provide for the use of measuring transducers with linear dependencies of the output values on the controlled ones. The latter is possible as a result of the use of measuring circuits in measuring transducers with linearized dependencies of the output values on the input and the use of intelligent sensors. As a measuring circuit for the construction of measuring transducers is considered the measuring circuit of Kenigsberg, which is characterized by a linear dependence of the output active value of the passive measured (controlled physical quantities). At the same time, the intelligent sensors are additionally assigned the function of linearization of the output dependence of a «simple» sensor on the controlled physical quantity.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040058
Author(s):  
O. B. Zaslavskii

If two particles collide near a rotating black hole, their energy in the centre of mass frame can become unbounded under certain conditions. In doing so, the Killing energy [Formula: see text] of debris at infinity is, in general, remain restricted. If [Formula: see text] is also unbounded, this is called the super-Penrose process. We elucidate when such a process is possible and give full classification of corresponding relativistic objects for rotating space-times. We also discuss the case of a pure electric super-Penrose process that is valid even in the flat space-time. The key role in consideration is played by the Wald inequalities.


2019 ◽  
Vol 34 (18) ◽  
pp. 1950093
Author(s):  
Guang Yang ◽  
Bingfang Yang ◽  
Biaofeng Hou ◽  
Hengheng Bi

In the framework of the littlest Higgs Model with T-parity (LHT), we investigate the single production of vector-like top partner [Formula: see text] decaying to [Formula: see text] in the leptonic channel at the high energy [Formula: see text] collision. We utilize the polarized electron beam and photon beam to enhance the signal and propose a search strategy by performing a detector simulation. On the basis of the current limits from the precision electroweak data and Higgs data, we find that the top partner mass can be excluded up to 1350 (1380) GeV with integrated luminosity of 1000 fb[Formula: see text] and 1400 (1470) GeV with integrated luminosity of 3000 fb[Formula: see text] for the [Formula: see text] TeV (2.4 TeV) at the [Formula: see text] level. If the center-of-mass energy can be improved to 3.0 TeV, the limits on the top partner mass will reach 1450 (1550) GeV with integrated luminosities of 1000 (3000) fb[Formula: see text].


2005 ◽  
Vol 14 (04) ◽  
pp. 579-586
Author(s):  
FU SONG ◽  
FU-HU LIU

The pseudorapidity distributions of charged particles produced in [Formula: see text] annihilations and AA collisions at high energies are investigated by using a revised thermalized cylinder model. The Monte Carlo calculated results are compared and found to be in good agreement with the experimental data of [Formula: see text] annihilations at center-of-mass energy [Formula: see text], 546, 200, and 53 GeV, Au–Au collisions at [Formula: see text] and 130 A GeV, and Pb–Pb collisions at [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document