scholarly journals The Development of High Efficiency Integrally Geared Driven Multistage Centrifugal Compressor

Author(s):  
Leilei Han ◽  
Fubao Li ◽  
Ning Li ◽  
Haiyang Zhou ◽  
Lihui Jiang ◽  
...  
1987 ◽  
Author(s):  
Don J. Gerhardt ◽  
F. William Capp ◽  
Dilip K. Mistry ◽  
Richard A. Worthen

Author(s):  
Marco Giachi ◽  
Giuseppe Vannini ◽  
Pier Luigi Di Pillo

In this paper both rotordynamic and thermodynamic analysis of a multistage centrifugal compressor running with one or more stages in post-stall condition are presented. The purpose of this study is to demonstrate the machine can operate stable and safe in such condition (i.e. stable condition means the head vs. flow operating curve shall have negative slope and safe means a vibration free machine). This allows to extend the operating range at lower flow with respect to the current day-by-day design practice. Experimental results from ASME PTC10 Class 2 test carried out on a seven-stage compressor are shown to validate the analysis.


1999 ◽  
Vol 121 (2) ◽  
pp. 312-320 ◽  
Author(s):  
G. L. Arnulfi ◽  
P. Giannattasio ◽  
C. Giusto ◽  
A. F. Massardo ◽  
D. Micheli ◽  
...  

This paper describes, from a theoretical point of view, the behavior of compression systems during surge and the effect of passive and active control devices on the instability limit of the system. A lumped parameter model is used to simulate the compression system described in Part I of this work (Arnulfi et al., 1999), based on an industrial multistage centrifugal compressor. A comparison with experimental results shows that the model is accurate enough to describe quantitatively all the features of the phenomenon. A movable wall control system is studied in order to suppress surge in the compressor. Passive and active control schemes are analyzed; they both address directly the dynamic behavior of the compression system to displace the surge line to lower flow rates. The influence of system, geometry and compressor speed is investigated: the optimum values of the control parameters and the corresponding increase in the extent of the stable operating range are presented in the paper.


2021 ◽  
Author(s):  
Gang Fan ◽  
Kang Chen ◽  
Shaoxiong Zheng ◽  
Yang Du ◽  
Yiping Dai ◽  
...  

Abstract The supercritical carbon dioxide (SCO2) Brayton cycle is one of the most promising power cycles due to its high efficiency, compactness and environmentally friendliness. The centrifugal compressor is a key component of small and medium SCO2 Brayton cycles, and its efficiency has a significant impact on the cycle efficiency. Since the required electric load of power cycles always fluctuates over the year, the SCO2 compressor will operate away from its design point and the narrow stable operating range of a compressor is always a restriction. In this paper, the variable-geometry method, which refers to the combination of a variable inlet-guide-vanes and variable diffuser vanes is proposed for the operating range extension of SCO2 compressors. A set of one-dimensional (1D) loss correlations has been found to accurately predict various losses of the SCO2 compressor components. Based on the 1D thermodynamic model, two programs with internal MATLAB codes coupled with the NIST REFPROP database have been developed for preliminary optimization design and off-design performance predictions of the variable geometry SCO2 compressor. The contributions from the variable-inlet prewhirl and variable diffuser vanes to the shifts of the surge line and choke line are discussed in this paper. The results show the variable-geometry SCO2 compressor has a superior performance at off-design conditions and a wider operating range.


Author(s):  
Ronald P. Porter

A high efficiency, low cost gas compressor is under development. Design has been completed and fabrication is in process. The manufacturer’s background in centrifugal compressor design and current methodology is discussed along with product definition. Assembly and test of the first unit is planned for summer 1996. The design features a single-stage overhung centrifugal compressor, variable inlet guide vanes, and dry gas seals.


Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 118968
Author(s):  
Hua Liu ◽  
Baiyang Zhao ◽  
Zhiping Zhang ◽  
Hongbo Li ◽  
Bin Hu ◽  
...  

Author(s):  
G. L. Arnulfi ◽  
P. Giannattasio ◽  
C. Giusto ◽  
A. F. Massardo ◽  
D. Micheli ◽  
...  

This paper reports an experimental investigation on centrifugal compressor surge. The compression system consists of a four-stage blower with vaned diffusers and a large plenum discharging into the atmosphere through a throttle valve. Measurements of unsteady pressure and flow rate in the plant, and of instantaneous velocity in the diffusers of the first and fourth compressor stage are performed during deep surge, at several valve settings and three different rotation speeds. Additional tests have been carried out on a different system configuration, i.e., without plenum, in order to obtain the steady-state compressor characteristics and to collect reference data on stall in surge-free conditions. In this configuration, a fully developed rotating stall was detected in the compressor diffusers, while during surge it affects only a limited part of the surge cycle. The goal of the present experimental work was to get a deeper insight into unstable operating conditions of multi-stage centrifugal compressors and to validate a theoretical model of the system instability to be used for the design of dynamic control systems.


Author(s):  
Y. Nishida ◽  
H. Kobayashi ◽  
H. Nishida ◽  
K. Sugimura

The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multi-objective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vanes was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%, It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.


Sign in / Sign up

Export Citation Format

Share Document