scholarly journals Osteoporosis Risk Predictive Model Using Supervised Machine Learning Algorithms

2017 ◽  
Vol 5 (6) ◽  
pp. 78
Author(s):  
Egejuru Ngozi Chidozie
Author(s):  
Inssaf El Guabassi ◽  
Zakaria Bousalem ◽  
Rim Marah ◽  
Aimad Qazdar

In recent years, the world's population is increasingly demanding to predict the future with certainty, predicting the right information in any area is becoming a necessity. One of the ways to predict the future with certainty is to determine the possible future. In this sense, machine learning is a way to analyze huge datasets to make strong predictions or decisions. The main objective of this research work is to build a predictive model for evaluating students’ performance. Hence, the contributions are threefold. The first is to apply several supervised machine learning algorithms (i.e. ANCOVA, Logistic Regression, Support Vector Regression, Log-linear Regression, Decision Tree Regression, Random Forest Regression, and Partial Least Squares Regression) on our education dataset. The second purpose is to compare and evaluate algorithms used to create a predictive model based on various evaluation metrics. The last purpose is to determine the most important factors that influence the success or failure of the students. The experimental results showed that the Log-linear Regression provides a better prediction as well as the behavioral factors that influence students’ performance.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Author(s):  
Charalambos Kyriakou ◽  
Symeon E. Christodoulou ◽  
Loukas Dimitriou

The paper presents a data-driven framework and related field studies on the use of supervised machine learning and smartphone technology for the spatial condition-assessment mapping of roadway pavement surface anomalies. The study explores the use of data, collected by sensors from a smartphone and a vehicle’s onboard diagnostic device while the vehicle is in movement, for the detection of roadway anomalies. The research proposes a low-cost and automated method to obtain up-to-date information on roadway pavement surface anomalies with the use of smartphone technology, artificial neural networks, robust regression analysis, and supervised machine learning algorithms for multiclass problems. The technology for the suggested system is readily available and accurate and can be utilized in pavement monitoring systems and geographical information system applications. Further, the proposed methodology has been field-tested, exhibiting accuracy levels higher than 90%, and it is currently expanded to include larger datasets and a bigger number of common roadway pavement surface defect types. The proposed system is of practical importance since it provides continuous information on roadway pavement surface conditions, which can be valuable for pavement engineers and public safety.


Sign in / Sign up

Export Citation Format

Share Document