Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression

Author(s):  
Ping Zhang ◽  
Jiaxin Wang ◽  
Weiren Luo ◽  
Jifan Yuan ◽  
Chunhong Cui ◽  
...  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Hui Chen ◽  
Jinfeng Cui ◽  
Juan Wang ◽  
Yuan Wang ◽  
Fei Tong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yang Lin ◽  
Xiuhua Kang ◽  
Zhicheng Liu ◽  
Wei Zhang ◽  
...  

Abstract Background Previous reports have identified that human bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) with their cargo microRNAs (miRNAs) are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis (IPF). Therefore, we explored whether delivery of microRNA-186 (miR-186), a downregulated miRNA in IPF, by BMSC EVs could interfere with the progression of IPF in a murine model. Methods In a co-culture system, we assessed whether BMSC-EVs modulated the activation of fibroblasts. We established a mouse model of PF to evaluate the in vivo therapeutic effects of BMSC-EVs and determined miR-186 expression in BMSC-EVs by polymerase chain reaction. Using a loss-of-function approach, we examined how miR-186 delivered by BMSC-EVs affected fibroblasts. The putative relationship between miR-186 and SRY-related HMG box transcription factor 4 (SOX4) was tested using luciferase assay. Next, we investigated whether EV-miR-186 affected fibroblast activation and PF by targeting SOX4 and its downstream gene, Dickkopf-1 (DKK1). Results BMSC-EVs suppressed lung fibroblast activation and delayed IPF progression in mice. miR-186 was downregulated in IPF but enriched in the BMSC-EVs. miR-186 delivered by BMSC-EVs could suppress fibroblast activation. Furthermore, miR-186 reduced the expression of SOX4, a target gene of miR-186, and hence suppressed the expression of DKK1. Finally, EV-delivered miR-186 impaired fibroblast activation and alleviated PF via downregulation of SOX4 and DKK1. Conclusion In conclusion, miR-186 delivered by BMSC-EVs suppressed SOX4 and DKK1 expression, thereby blocking fibroblast activation and ameliorating IPF, thus presenting a novel therapeutic target for IPF.


2013 ◽  
Vol 345 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Ryota Tanaka ◽  
Hiroshi Watanabe ◽  
Azusa Kodama ◽  
Victor Tuan Giam Chuang ◽  
Yu Ishima ◽  
...  

JCI Insight ◽  
2021 ◽  
Author(s):  
Prathibha R. Gajjala ◽  
Rajesh K. Kasam ◽  
Divyalakshmi Soundararajan ◽  
Debora Sinner ◽  
Steven K. Huang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Liang ◽  
Yanhua Chang ◽  
Jing Liu ◽  
Yan Yu ◽  
Wancheng Qiu ◽  
...  

Pulmonary fibrosis is a kind of interstitial lung disease with progressive pulmonary scar formation, leading to irreversible loss of lung functions. The TGF-β1/Smad signaling pathway plays a key role in fibrogenic processes. It is associated with the increased synthesis of extracellular matrix, enhanced proliferation of fibroblasts, and transformation of alveolar epithelial cells into interstitial cells. We investigated P-Rex1, a PIP3-Gβγ–dependent guanine nucleotide exchange factor (GEF) for Rac, for its potential role in TGF-β1–induced pulmonary fibrosis. A high expression level of P-Rex1 was identified in the lung tissue of patients with pulmonary fibrosis than that from healthy donors. Using the P-Rex1 knockdown and overexpression system, we established a novel player of P-Rex1 in mouse lung fibroblast migration. P-Rex1 contributed to fibrogenic processes in lung fibroblasts by targeting the TGF-β type Ⅱ receptor (TGFβR2). The RNA-seq analysis for expression profiling confirmed the modulation of P-Rex1 in cell migration and the involvement of P-Rex1 in TGF-β1 signaling. These results identified P-Rex1 as a signaling molecule involved in TGF-β1–induced pulmonary fibrosis, suggesting that P-Rex1 may be a potential target for pulmonary fibrosis treatment.


2008 ◽  
Vol 5 (3) ◽  
pp. 311-315 ◽  
Author(s):  
G. J. Laurent ◽  
R. J. McAnulty ◽  
M. Hill ◽  
R. Chambers

Sign in / Sign up

Export Citation Format

Share Document