Evaluation of Crosslink Density Using Material Constants of Ethylene-Propylene-Diene Monomer/Styrene-Butadiene Rubber with Different Nanoclay Loading: Finite Element Analysis-Simulation and Experimental

2020 ◽  
Vol 12 (5) ◽  
pp. 632-642 ◽  
Author(s):  
S. Vishvanathperumal ◽  
V. Navaneethakrishnan ◽  
G. Anand ◽  
S. Gopalakannan

Nanoclay is used to enhance the mechanical properties of ethylene-propylene-diene rubber (EPDM)/styrene-butadiene rubber (SBR) blends. Sulphur (S), dicumyl peroxide (P), and mixed systems (S + P) were used as crosslinking or vulcanizing agents for the EPDM/SBR nanocomposites. The experimental data of the stress–strain behavior of EPDM/SBR blends with different nanoclay loading have been determined through a tension test. Nonlinear mechanical behaviors of the rubbers are described by strain energy functions in order to assurance that rigid body motions play no role in the constitutive law. The mathematical model such as the Mooney-Rivlin model based on the existence of strain energy density functions depends on the right Cauchy-Green's deformation tensor or Green's strain tensor. The experimental data are fitted to the Mooney-Rivlin model in order to find the rubber material constants. These constants are used to find the crosslinking density. A comparison between the experimental stress–strain behavior and finite element analysis of a uniaxial tension test at different nanoclay loading is presented.

Author(s):  
J M Allport ◽  
A J Day

Material models for the finite element analysis (FEA) of polymeric and elastomeric compounds are only available in limited form in most commercial finite element (FE) packages. The most common are the phenomenological Mooney-Rivlin and the Ogden models, for which the constants bear no relationship to the physical or chemical characteristics of the rubber and their derivation is difficult. Both models are limited in their accuracy for filled rubbers used in combined states of tensile and compressive deformation, and since these are common operational conditions for engineering components such as drive couplings, engine mounts and torsional vibration dampers, their use in engineering analyses is restricted. In this paper a statistical mechanics material modelling approach for synthetic, filled elastomeric compounds in FEA is presented. Using styrene-butadiene rubber (SBR) as an example, the theory and its application in the commercially available ABAQUS finite element analysis program is explained. FE models of tensile and compressive specimens in two and three dimensions are used to demonstrate the use of the model, and results are presented, discussed and compared with measured data. Good correlation in both tension and compression is demonstrated. A practical application of the model to the SBR blocks in a Holset torsional drive coupling is presented; this analysis involves complex issues of mesh design and contact modelling. The results show good agreement with measured performance, and clearly demonstrate how this type of material modelling approach can be effectively used in the computer aided engineering and design of engineering rubber components.


Author(s):  
Ruofan Liu ◽  
Erol Sancaktar

Payne and Mullins effects are widely observed in reinforced rubber materials. The mechanisms by which these two effects work are not fully understood. Several models have been proposed, including molecular slippage model, bond rupture model, and filler rupture model. In this study, two different compounds of styrene–butadiene rubber were prepared using carbon black and silica as reinforcement fillers, respectively, and subjected to cyclic fatigue process. Tensile, creep, and relaxation tests were performed on fatigued samples to assess the residual stress–strain behavior by comparing with the results from similar tests using pristine (no fatigue) samples. When the tensile stiffness behavior of fatigued specimens was evaluated, we noted that the stiffness versus strain behavior which exhibited a monotonic decreasing–increasing behavior with the pristine specimens changed to what we call “dual-stiffness” condition, where the specimens went through a first (low) turning point as with the pristine samples, but then dropped off of a peak to go through a second softening stage, similar to the first softening stage of the pristine material. We believe that such spiking (dual) stiffness behavior characterized by a “Peak” point represents a combination of both Payne and the Mullins effects active during fatigue loading. We conclude that molecular slippage and bond rupture are the main factors affecting the physical properties of carbon black-filled compounds, while breakage and recombination of the filler are the key mechanisms affecting the silica-filled compounds during the fatigue process.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


1990 ◽  
Vol 112 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Mack G. Gardner-Morse ◽  
Jeffrey P. Laible ◽  
Ian A. F. Stokes

This technical note demonstrates two methods of incorporating the experimental stiffness of spinal motion segments into a finite element analysis of the spine. The first method is to incorporate the experimental data directly as a stiffness matrix. The second method approximates the experimental data as a beam element.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document