Spatial and Temporal Model Development for Analysis the Impact of Concentration of Pollutants and Emissions to the Air Quality

2016 ◽  
Vol 22 (12) ◽  
pp. 4069-4072 ◽  
Author(s):  
Yayat Ruhiat ◽  
Firmanul C Wibowo ◽  
Aceng Hasani ◽  
. Kuswantoro ◽  
Rian Fahrizal ◽  
...  
2015 ◽  
Vol 15 (24) ◽  
pp. 35591-35643 ◽  
Author(s):  
X. Dong ◽  
J. S. Fu ◽  
K. Huang ◽  
D. Tong

Abstract. The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. The default parameterization of threshold friction velocity constants in the CMAQ are revised to avoid double counting of the impact of soil moisture based on the re-analysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is implemented to simulate the reactions involving dust aerosol. The improved dust module in the CMAQ was applied over East Asia for March and April from 2006 to 2010. Evaluation against observations has demonstrated that simulation bias of PM10 and aerosol optical depth (AOD) is reduced from −55.42 and −31.97 % in the original CMAQ to −16.05 and −22.1 % in the revised CMAQ, respectively. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry is also found to result in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). Investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variations of dust aerosols. Model evaluation indicates potential uncertainties within the excessive soil moisture fraction used by meteorological simulation. The mass contribution of fine mode aerosol in dust emission may be underestimated by 50 %. The revised revised CMAQ provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.


2016 ◽  
Vol 16 (13) ◽  
pp. 8157-8180 ◽  
Author(s):  
Xinyi Dong ◽  
Joshua S. Fu ◽  
Kan Huang ◽  
Daniel Tong ◽  
Guoshun Zhuang

Abstract. The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust. The default parameterization of initial threshold friction velocity constants are revised to correct the double counting of the impact of soil moisture in CMAQ by the reanalysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is also implemented. The improved dust module in the CMAQ is applied over East Asia for March and April from 2006 to 2010. The model evaluation result shows that the simulation bias of PM10 and aerosol optical depth (AOD) is reduced, respectively, from −55.42 and −31.97 % by the original CMAQ to −16.05 and −22.1 % by the revised CMAQ. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry also results in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42−), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3−). The investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variation of dust. The model evaluation also indicates potential uncertainty within the excessive soil moisture used by meteorological simulation. The mass contribution of fine-mode particles in dust emission may be underestimated by 50 %. The revised CMAQ model provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


2021 ◽  
Vol 13 (3) ◽  
pp. 488
Author(s):  
Aimon Tanvir ◽  
Zeeshan Javed ◽  
Zhu Jian ◽  
Sanbao Zhang ◽  
Muhammad Bilal ◽  
...  

Reduced mobility and less anthropogenic activity under special case circumstances over various parts of the world have pronounced effects on air quality. The objective of this study is to investigate the impact of reduced anthropogenic activity on air quality in the mega city of Shanghai, China. Observations from the highly sophisticated multi-axis differential optical absorption spectroscope (MAX-DOAS) instrument were used for nitrogen dioxide (NO2) and formaldehyde (HCHO) column densities. In situ measurements for NO2, ozone (O3), particulate matter (PM2.5) and the air quality index (AQI) were also used. The concentration of trace gases in the atmosphere reduces significantly during annual Spring Festival holidays, whereby mobility is reduced and anthropogenic activities come to a halt. The COVID-19 lockdown during 2020 resulted in a considerable drop in vertical column densities (VCDs) of HCHO and NO2 during lockdown Level-1, which refers to strict lockdown, i.e., strict measures taken to reduce mobility (43% for NO2; 24% for HCHO), and lockdown Level-2, which refers to relaxed lockdown, i.e., when the mobility restrictions were relaxed somehow (20% for NO2; 22% for HCHO), compared with pre-lockdown days, as measured by the MAX-DOAS instrument. However, for 2019, a reduction in VCDs was found only during Level-1 (24% for NO2; 6.62% for HCHO), when the Spring Festival happened. The weekly cycle for NO2 and HCHO depicts no significant effect of weekends on the lockdown. After the start of the Spring Festival, the VCDs of NO2 and HCHO showed a decline for 2019 as well as 2020. Backward trajectories calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated more air masses coming from the sea after the Spring Festival for 2019 and 2020, implying that a low pollutant load was carried by them. No impact of anthropogenic activity was found on O3 concentration. The results indicate that the ratio of HCHO to NO2 (RFN) fell in the volatile organic compound (VOC)-limited regime.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Emily Chang ◽  
Kenneth Zhang ◽  
Margaret Paczkowski ◽  
Sara Kohler ◽  
Marco Ribeiro

Abstract Background This study seeks to answer two questions about the impacts of the 2020 Environmental Protection Agency’s enforcement regulation rollbacks: is this suspension bolstering the economic viability of industries as oil and manufacturing executives claim they will and are these regulations upholding the agency’s mission of protecting the environment? Results To answer the former question, we utilized 6 months of state employment level data from California, United States, as a method of gauging the economic health of agency-regulated industries. We implemented a machine learning model to predict weekly employment data and a t-test to indicate any significant changes in employment. We found that, following California's state-issued stay-at-home order and the agency’s regulation suspension, oil and certain manufacturing industries had statistically significant lower employment values. To answer the latter question, we used 10 years of PM2.5 levels in California, United States, as a metric for local air quality and treatment–control county pairs to isolate the impact of regulation rollbacks from the impacts of the state lockdown. Using the agency’s data, we performed a t-test to determine whether treatment–control county pairs experienced a significant change in PM2.5 levels. Even with the statewide lockdown—a measure we hypothesized would correlate with decreased mobility and pollution levels—in place, counties with oil refineries experienced the same air pollution levels when compared to historical data averaged from the years 2009 to 2019. Conclusions In contrast to the expectation that the suspension would improve the financial health of the oil and manufacturing industry, we can conclude that these industries are not witnessing economic growth with the suspension and state shutdown in place. Additionally, counties with oil refineries could be taking advantage of these rollbacks to continue emitting the same amount of PM2.5, in spite of state lockdowns. For these reasons, we ask international policymakers to reconsider the suspension of enforcement regulations as these actions do not fulfill their initial expectations. We recommend the creation and maintenance of pollution control and prevention programs that develop emission baselines, mandate the construction of pollution databases, and update records of pollution emissions.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


Sign in / Sign up

Export Citation Format

Share Document