Tumor Environment-Responsive Degradable Branched Glycopolymer Magnetic Resonance Imaging Contrast Agent and Its Tumor-Targeted Imaging

2019 ◽  
Vol 15 (7) ◽  
pp. 1384-1400 ◽  
Author(s):  
Yang Wang ◽  
Yan Dai ◽  
Qiang Luo ◽  
Xiaoli Wei ◽  
Xueyang Xiao ◽  
...  

Branched macromolecules have been used as carriers for imaging probes and drug delivery systems because of their tunable molecular structures, as well as their regular nanoscale structures and dimensions. We designed and synthesized two tumor environment-responsive branched and gadolinium (Gd)-based glycopolymer conjugates and investigated their potency as highly effective and safe magnetic resonance imaging (MRI) contrast agents. These branched macromolecules were prepared by one-pot reversible addition fragmentation chain transfer (RAFT) polymerization and conjugating chemistry. A biodegradable GFLG oligopeptide was used to successfully link the branch-chains of the branched macromolecules, finally a conjugate of this branched macromolecule and DOTA-Gd (HB-pGAEMA-Gd) with a molecular weight (MW) of 124 kDa was produced. Meanwhile, to improve the ability of tumor-targeting, we conjugated a tumor-targeting cRGDyK cyclic peptide to the branched molecule to prepare a tumor-targeted branched macromoleculeDOTA-Gd conjugate (HB-pGAEMA-RGD-Gd) with a MW of 136 kDa. The prepared branched macromolecules had a nanoscale hydrodynamic particle size and could be degraded into lower MW fragments with the cathepsin B. The aqueous phase relaxation efficiency of HB-pGAEMA-RGD-Gd (12.3 mM–1s–1 and HB-pGAEMA-Gd (13.2 mM–1s–1 was four times higher than that of DTPA-Gd (2.9 mM–1s–1), a clinically used contrast agent. In comparison with DTPA-Gd, the branched macromolecular contrast agents significantly enhanced the MRI signal intensity at the tumor site in vivo, and the enhancement of MRI signal intensity was up to 6 times that of the DTPA-Gd owing to their high relaxation efficiencies and accumulation at the tumor site. In addition, in vitro and in vivo toxicity studies indicated that the degradable macromolecular contrast agents had no significant toxicity.

2018 ◽  
Vol 6 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Wen Xu ◽  
Jinghua Sun ◽  
Liping Li ◽  
Xiaoyang Peng ◽  
Ruiping Zhang ◽  
...  

A magnetic resonance imaging contrast agent, based on Mn2+-chelating melanin nanoparticles, that has ultrahigh efficient clearance in vivo for tumor-targeted imaging.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Maiju Soikkeli ◽  
Mikko I. Kettunen ◽  
Riikka Nivajärvi ◽  
Venla Olsson ◽  
Seppo Rönkkö ◽  
...  

Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T1 relaxation time in tumor, while the T1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2021 ◽  
Vol 57 (14) ◽  
pp. 1770-1773
Author(s):  
S. A. Amali S. Subasinghe ◽  
Jonathan Romero ◽  
Cassandra L. Ward ◽  
Matthew D. Bailey ◽  
Donna R. Zehner ◽  
...  

The complexes described here serve as contrast agents for magnetic resonance imaging thermometry.


2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Lin Qiu ◽  
Shuwen Zhou ◽  
Ying Li ◽  
Wen Rui ◽  
Pengfei Cui ◽  
...  

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 μM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM−1 S−1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 252
Author(s):  
Rachael A Panizzo ◽  
David G Gadian ◽  
Jane C Sowden ◽  
Jack A Wells ◽  
Mark F Lythgoe ◽  
...  

Efficacy of neural stem/progenitor cell (NPC) therapies after cerebral ischaemia could be better evaluated by monitoring in vivo migration and distribution of cells post-engraftment in parallel with analysis of lesion volume and functional recovery. Magnetic resonance imaging (MRI) is ideally placed to achieve this, but still poses several challenges. We show that combining the ferumoxide MRI contrast agent Endorem with protamine sulphate (FePro) improves iron oxide uptake in cells compared to Endorem alone and is non-toxic. Hence FePro complex is a better contrast agent than Endorem for monitoring NPCs. FePro complex-labelled NPCs proliferated and differentiated normally in vitro, and upon grafting into the brain 48 hours post-ischaemia they were detected in vivo by MRI. Imaging over four weeks showed the development of a confounding endogenous hypointense contrast evolution at later timepoints within the lesioned tissue. This was at least partly due to accumulation within the lesion of macrophages and endogenous iron. Neither significant NPC migration, assessed by MRI and histologically, nor a reduction in the ischaemic lesion volume was observed in NPC-grafted brains.  Crucially, while MRI provides reliable information on engrafted cell location early after an ischaemic insult, pathophysiological changes to ischaemic lesions can interfere with cellular imaging at later timepoints.


2013 ◽  
Vol 26 (02) ◽  
pp. 100-104 ◽  
Author(s):  
M. C. Stewart ◽  
L. Ciobanu ◽  
P. D. Constable ◽  
J. F. Naughton

SummaryObjective: To assess the ability of a contrast-enhanced magnetic resonance imaging (MRI) technique to quantitatively determine glycosaminoglycan content in canine articular cartilage.Methods: Fifty-four full-thickness cartilage discs were collected from the femorotibial and scapulohumeral joints of three adult dogs immediately following euthanasia. One set of discs from each dog was analysed for glycosaminoglycan content using a colourimetric laboratory assay. The remaining position-matched set of discs from contralateral limbs underwent pre- and post-contrast gadolinium-enhanced MRI, using repeated saturation recovery pulse sequences which were used to generate calculated T1 maps of the cartilage discs. Linear regression analysis was then performed relating delayed gadolinium-enhanced MRI T1 calculated signal intensity to the cartilage glycosaminoglycan content normalized to DNA content. Repeatability of triplicate measurements was estimated by calculating the coefficient of variation.Results: Mean coefficient of variation estimates for the gadolinium-enhanced MRI T1 signal intensity values for nine sampling sites from three dogs ranged from 5.9% to 7.5%. Gadolinium-enhanced MRI T1 signal intensity was significantly correlated (p <0.05) with normalized glycosaminoglycan content in two dogs (r = 0.79, p = 0.011; r = 0.78, p = 0.048), but not in the third dog (r = 0.53, p = 0.071).Clinical significance: Gadolinium-enhanced MRI assessment of cartilage may be predictive of glycosaminoglycan content and therefore offer an in vivo assessment of changes in cartilage characteristics over time. Additional studies appear indicated to determine the reliability and clinical applicability of gadolinium-enhanced MRI in detecting changes in cartilage over time.


1992 ◽  
Vol 101 (3) ◽  
pp. 248-254 ◽  
Author(s):  
Kenny H. Chan ◽  
William J. Doyle ◽  
J. Douglas Swarts ◽  
David Kardatzke ◽  
Yoshie Hashida ◽  
...  

The use of magnetic resonance imaging in otitis media research is being explored in our laboratory. In this study, we present a new method for studying changes in the middle ear cleft due to an episode of induced otitis media in the chinchilla model. It uses gadolinium-diethylenetriamine pentaacetic acid, a magnetic resonance imaging contrast agent, to examine the uptake and washout characteristics of middle ear mucosa during an inflammatory episode. Parameters such as the time to maximum intensity of the mucosa and the washout rate of the contrast agent from the mucosa were significantly correlated to the duration of the infection.


2019 ◽  
Vol 10 (13) ◽  
pp. 3770-3778 ◽  
Author(s):  
Huan Wang ◽  
Dongqin Yu ◽  
Bo Li ◽  
Zhen Liu ◽  
Jinsong Ren ◽  
...  

Novel ROS-activated contrast agents are designed for magnetic resonance imaging of ROS for early diagnosis of sepsis.


Sign in / Sign up

Export Citation Format

Share Document