Facile Ultrasound-Triggered Release of Calcein and Doxorubicin from Iron-Based Metal-Organic Frameworks

2020 ◽  
Vol 16 (9) ◽  
pp. 1359-1369
Author(s):  
Mihad Ibrahim ◽  
Rana Sabouni ◽  
Ghaleb A. Husseini ◽  
Abdollah Karami ◽  
Reenu Geetha Bai ◽  
...  

Metal-organic frameworks (MOFs) are promising new nanocarriers with potential use in anticancer drug delivery. However, there is a scarcity of studies on the uptake and release of guest molecules associated with MOF nanovehicles, and their mechanism is poorly understood. In this work, newly developed iron-based MOFs, namely Fe-NDC nanorods, were investigated as potential nanocarriers for calcein (as a model drug/dye) and Doxorubicin (a chemotherapeutic drug (DOX)). Calcein was successfully loaded by equilibrating its solution with the MOFs nanoparticles under constant stirring. The calcein average encapsulation efficiency achieved was 43.13%, with a corresponding capacity of 17.74 wt.%. In-vitro calcein release was then carried out at 37°C in phosphate buffer saline (PBS) using ultrasound (US) as an external trigger. MOFs released an average of 17.8% (without US), whereas they released up to 95.2% of their contents when 40-kHz US at ~1 W/cm2 was applied for 10 min. The Cytotoxic drug DOX was also encapsulated in Fe-NDC, and its In-vitro release profile was determined under the same conditions. DOX encapsulation efficiency and capacity were found to be 16.10% and 13.37 wt.%, respectively. In-vitro release experiments demonstrated significant release, reaching 80% in 245 minutes, under acoustic irradiation, compared to around 6% in the absence of US. Additionally, experimental results showed that Fe-NDC nanoparticles are biocompatible even at relatively high concentrations, with an MCF-7 IC50 of 1022 g/ml. Our work provides a promising platform for anticancer drug delivery by utilizing biocompatible Fe-NDC nanoparticles and US as an external trigger mechanism.

2016 ◽  
Vol 45 (7) ◽  
pp. 2963-2973 ◽  
Author(s):  
Angshuman Ray Chowdhuri ◽  
Dipsikha Bhattacharya ◽  
Sumanta Kumar Sahu

The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised.


2019 ◽  
Vol 4 (8) ◽  
pp. 2333-2338 ◽  
Author(s):  
Hoai Phuong Nguyen Thi ◽  
Ha Duc Ninh ◽  
Chinh Van Tran ◽  
Bac Thanh Le ◽  
Sheshanath V. Bhosale ◽  
...  

2018 ◽  
Vol 10 (19) ◽  
pp. 16698-16706 ◽  
Author(s):  
Bingqian Lei ◽  
Mengfan Wang ◽  
Zelei Jiang ◽  
Wei Qi ◽  
Rongxin Su ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2200
Author(s):  
Yuanyuan Wang ◽  
Yongyue Li ◽  
Jinghua Gong ◽  
Jinghong Ma

Here, we report a novel thermo-triggered-releasing microcapsule for liposoluble drug delivery. Monodisperse microcapsules with a poly(N-isopropylacrylamide-co-methacrylic acid) hydrogel shell and an oil core were successfully fabricated by a double coaxial microfluidic device. Fluorescent dye Lumogen Red F300 as a model liposoluble drug was dissolved in the oil core with controllable loading capacity. The volume phase transition temperature (VPTT) of the microcapsule was adjusted by copolymerizing with the hydrophilic methacrylic acid. The in vitro release study demonstrates that the shells shrink, leading to the thermo-triggered release of the model drug from the microcapsules at the environmental temperature above the VPTT, while the swollen hydrogel shells can protect the encapsulated drug from leakage and contamination below the VPTT. The proposed microcapsule is a promising liposoluble drug delivery system with controllable loading and smart thermo-triggered release.


Sign in / Sign up

Export Citation Format

Share Document