Soft Computing Techniques for Employee Evaluation: Designing Framework of Artificial Neural Network for Employee Evaluation

2012 ◽  
Vol 1 (1) ◽  
pp. 94-98
Author(s):  
Nisha Macwan ◽  
Priti Srinivas Sajja
2021 ◽  
Vol 13 (17) ◽  
pp. 9509
Author(s):  
Mosa Machesa ◽  
Lagouge Tartibu ◽  
Modestus Okwu

Thermoacoustic refrigerators are emerging devices that make use of meaningful high-pressure sound waves to induce cooling. Despite the accelerated progress in the field of thermoacoustics, knowledge of the heat transfer process in the heat exchange of the devices is still developing. This work applies different soft computing techniques, namely, an artificial neural network trained by particle swarm optimisation (ANN-PSO), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural networks (ANNs) to predict the oscillatory heat transfer coefficient in the heat exchangers of a thermoacoustic device. This study provides the details of the parametric analysis of an artificial neural network model trained by particle swarm optimisation. The solution model considers the number of neurons, the swarm population, and the acceleration factors to develop and analyse the architecture of several models. The regression model (R2) and mean squared error (MSE) were used to evaluate the accuracy of the models. The result showed that the proposed soft computing techniques can potentially be used for the modelling and the analysis of the oscillatory heat transfer coefficient with a higher level of accuracy. The result reported in this study implies that the prediction of the OHTC can be considered for the enhancement of thermoacoustic refrigerators performances.


Recently, several interesting research studies have been reported on soft computing approaches. Soft computing approaches are solving several kinds of problems and provide alternative solutions. Different Soft computing techniques or approaches have been applied in medical care data for effective diagnosis prediction. Those approaches implemented on diseases diagnosing of pulmonary tuberculosis and obtaining better results in comparison to traditional approaches. This approach is an aggregation of methodologies that were combined various model and provide solutions to those problems that are difficult to handle in real-world situations. Researchers keep developing of an accurate and reliable intelligent decision-making method for the construction of pulmonary tuberculosis diagnosis system. The existing diagnostic testing system procedures are not only tedious, they also take a long time to analyze. Therefore, the diagnosis of tuberculosis still requires further improvements to new rapid and accurate diagnostic model and techniques that enable higher sensitivity and specificity to be achieved, thus promoting disease control and Prevention. State of the art makes approaches to soft computing more powerful, more reliable and more efficient. The importance of this review paper is to distinguish the different soft computing approaches used to support pulmonary tuberculosis disease diagnosis, identification, prediction and intelligent classification. In the field, researchers and medical practitioners look forward to using approaches to soft computing. Some of these are an artificial neural network, genetic algorithm, and support vector machine, fuzzy logic etc. latest methods in the diagnostic field uses artificial neural network. Some of the other benefits of Artificial neural network is an easy - to - optimize, resources and adoptable non - linear modeling of expansive data sets and predictive inference accuracy demonstrating that artificial neural network could serve as a valuable decision support tool in various fields, including medicine


2021 ◽  
Author(s):  
Enrico Soranzo ◽  
Carlotta Guardiani ◽  
Wei Wu

AbstractTunnel face is important for shallow tunnels to avoid collapses. In this study, tunnel face stability is studied with soft computing techniques. A database is created based on the literature which is used to train some broadly adopted soft computing techniques, ranging from linear regression to the artificial neural network. The soil dry density, cohesion, friction angle, cover depth and the tunnel diameter are used as the input parameters. The soft computing techniques state whether the face support is stable and predict the face support pressure. It is found that the artificial neural network outperforms the other techniques. The face support pressure is predicted with the artificial neural network for statistically distributed samples, and the failure probability is obtained with Monte Carlo simulations. In this way, the stability of the tunnel face can be reliably assessed and the support pressure can be estimated fairly accurately.


2020 ◽  
Author(s):  
Jibril Abdulsalam ◽  
Abiodun Ismail Lawal ◽  
Ramadimetja Lizah Setsepu ◽  
Moshood Onifade ◽  
Samson Bada

Abstract Globally, the provision of energy is becoming an absolute necessity. Biomass resources are abundant and have been described as a potential alternative source of energy. However, it is important to assess the fuel characteristics of the various available biomass sources. Soft computing techniques are presented in this study to predict the mass yield (MY), energy yield (EY), and higher heating value (HHV) of hydrothermally carbonized biomass by using Gene Expression Programming (GEP), multiple-input single output-artificial neural network (MISO-ANN), and Multilinear regression (MLR). The three techniques were compared using statistical performance metrics. The coefficient of determination (R2), mean absolute error (MAE), and mean bias error (MBE) were used to evaluate the performance of the models. The MISO-ANN with 5-10-10-1 and 5-15-15-1 network architectures provided the most satisfactory performance of the three proposed models (R2 = 0.976, 0.955, 0.996; MAE = 2.24, 2.11, 0.93; MBE = 0.16, 0.37, 0.12) for MY, EY and HHV respectively. The GEP technique’s ability to predict hydrochar properties based on the input parameters was found to be satisfactory, while MLR provided an unsatisfactory predictive model. Sensitivity analysis was conducted, and the analysis revealed that volatile matter (VM) and temperature (Temp) have more influence on the MY, EY, and HHV.


Author(s):  
Aksel Seitllari ◽  
M. Emin Kutay

In this study, soft computing and multilinear regression techniques were employed to develop models for prediction of progression of chip seal percent embedment depth ( Pe). The model uses inputs such as cumulative equivalent traffic volume, Vialit test results, dust content of aggregates, and initial embedment depth. Multilinear regression, adaptive neuro-fuzzy system, and artificial neural network techniques were used to estimate the Pe. The contribution of the variables affecting Pe was evaluated through a sensitivity analysis. The results indicate that while most of the proposed models were able to predict the Pe reasonably, the artificial neural network model performed the best.


2015 ◽  
Vol 16 (6) ◽  
pp. 1135-1144

<div> <p>Wind Energy is one of the important sources of renewable energy. There is a need to prepare the availability of wind energy in the area where there is no measured wind speed data. For this type of situation, it seems to be necessary to predict the wind energy potential using such as wind speed using artificial neural network (ANN) method. Soft computing techniques are widely used now days in the study of wind energy potential estimation. In this study the wind energy potential between neighborhood meteorological tower stations is predicted using Artificial Neural Network technique. One of the most suitable areas of Tamil Nadu for wind power generation is some locations in the districts of Tirunelveli, Thoothukudi, Kanyakumari, Theni, Coimbatore, and Dindigul. Along the southeast coastline of Tamil Nadu there are no valleys and mountains besides the mountains are situated away from the sea coast in many regions. Therefore, these regions are exposed to northerly winds that are not as strong as the southerly winds.</p> </div> <p>&nbsp;</p>


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Ezzatollah Haghighat ◽  
Saeed Shaikhzadeh Najar ◽  
Seyed Mohammad Etrati

The aim of this paper was to predict the needle penetration force in denim fabrics based on sewing parameters by using the fuzzy logic (FL) model. Moreover, the performance of fuzzy logic model is compared with that of the artificial neural network (ANN) model. The needle penetration force was measured on the Instron tensile tester. In order to plan the fuzzy logic model, the sewing needle size, number of fabric layers and fabric weight were taken into account as input parameters. The output parameter is needle penetration force. In addition, the same parameters and data are used in artificial neural network model. The results indicate that the needle penetration force can be predicted in terms of sewing parameters by using the fuzzy logic model. The difference between performance of fuzzy logic and neural network models is not meaningful ( RFL=0.971 and RANN=0.982). It is concluded that soft computing models such as fuzzy logic and artificial neural network can be utilized to forecast the needle penetration force in denim fabrics. Using the fuzzy logic model for predicting the needle penetration force in denim fabrics can help the garment manufacturer to acquire better knowledge about the sewing process. As a result, the sewing process may be improved, and also the quality of denim apparel increased.


2018 ◽  
Vol 6 (3) ◽  
pp. 7
Author(s):  
MUHAMMAD ABDULHAMID SHAFI'I ◽  
OLAMIDE USMAN MUBARAQ ◽  
A. OJERINDE OLUWASEUN ◽  
NDAKO ADAMA VICTOR ◽  
ALHASSAN JOHN K. ◽  
...  

2017 ◽  
Vol 10 (13) ◽  
pp. 394
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

Artificial Neuro–Glia Networks (ANGNs) are upcoming approach in soft computing wherein the effects biological counterpart of artificial glia cells are used to support pattern based growth mechanism in artificial neural network. In this study we present a mathematical model of such ANGNs to build a von neumann machine. This method will properly learn its parameters for increasing the growth of neural network which can be used for solving several scaling problems in computing.  


Sign in / Sign up

Export Citation Format

Share Document