The Method of Auxiliary Sources Approach to Modeling of Electromagnetic Field Scattering on Two-Dimensional Periodic Structures

2011 ◽  
Vol 8 (8) ◽  
pp. 1609-1618 ◽  
Author(s):  
D. Kakulia ◽  
K. Tavzarashvili ◽  
G. Ghvedashvili ◽  
D. Karkashadze ◽  
Ch. Hafner
2018 ◽  
Vol 9 ◽  
pp. 2287-2296
Author(s):  
Lukáš Ondič ◽  
Marian Varga ◽  
Ivan Pelant ◽  
Alexander Kromka ◽  
Karel Hruška ◽  
...  

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.


Author(s):  
Raj K. Narisetti ◽  
Massimo Ruzzene ◽  
Michael J. Leamy

This paper investigates wave propagation in two-dimensional nonlinear periodic structures subject to point harmonic forcing. The infinite lattice is modeled as a springmass system consisting of linear and cubic-nonlinear stiffness. The effects of nonlinearity on harmonic wave propagation are analytically predicted using a novel perturbation approach. Response is characterized by group velocity contours (derived from phase-constant contours) functionally dependent on excitation amplitude and the nonlinear stiffness coefficients. Within the pass band there is a frequency band termed the “caustic band” where the response is characterized by the appearance of low amplitude regions or “dead zones.” For a two-dimensional lattice having asymmetric nonlinearity, it is shown that these caustic bands are dependent on the excitation amplitude, unlike in corresponding linear models. The analytical predictions obtained are verified via comparisons to responses generated using a time-domain simulation of a finite two-dimensional nonlinear lattice. Lastly, the study demonstrates amplitude-dependent wave beaming in two-dimensional nonlinear periodic structures.


1976 ◽  
Vol 3 (2) ◽  
pp. 97-102
Author(s):  
P. N. Murgatroyd

The Wound Foil Inductor is an important example of inductive components with appreciable internal capacitance. It is examined from three viewpoints – electromagnetic field theory, distributed-parameter (or transmission-line), and lumped equivalent circuit. The analyses are compared, particularly in terms of phase gradients within a component, and the relationship between a two-dimensional field analysis and the now established lumped model is derived.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050170
Author(s):  
Yu. M. Pismak ◽  
D. Shukhobodskaia

In the model with Chern-Simons potential describing the coupling of electromagnetic field with a two-dimensional material, the possibility of the appearance of bound field states, vanishing at sufficiently large distances from interacting with its macro-objects, is considered. As an example of such two-dimensional material object we consider a homogeneous isotropic plane. Its interaction with electromagnetic field is described by a modified Maxwell equation with singular potential. The analysis of their solution shows that the bound state of field cannot arise without external charges and currents. In the model with currents and charges the Chern-Simons potential in the modified Maxwell equations creates bound state in the form of the electromagnetic wave propagating along the material plane with exponentially decreasing amplitude in the orthogonal to its direction.


Sign in / Sign up

Export Citation Format

Share Document