Comparative Analysis of Machine Learning Approaches for Twitter Sentiment Analysis

2018 ◽  
Vol 15 (5) ◽  
pp. 1743-1749 ◽  
Author(s):  
M Nivaashini ◽  
R. S Soundariya ◽  
P Thangaraj
Author(s):  
Mangena Venu Madhavan ◽  
Sagar Pande ◽  
Pooja Umekar ◽  
Tushar Mahore ◽  
Dhiraj Kalyankar

Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


Big Data ◽  
2016 ◽  
pp. 1917-1933
Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


2018 ◽  
Vol 6 ◽  
pp. 343-356 ◽  
Author(s):  
Egoitz Laparra ◽  
Dongfang Xu ◽  
Steven Bethard

This paper presents the first model for time normalization trained on the SCATE corpus. In the SCATE schema, time expressions are annotated as a semantic composition of time entities. This novel schema favors machine learning approaches, as it can be viewed as a semantic parsing task. In this work, we propose a character level multi-output neural network that outperforms previous state-of-the-art built on the TimeML schema. To compare predictions of systems that follow both SCATE and TimeML, we present a new scoring metric for time intervals. We also apply this new metric to carry out a comparative analysis of the annotations of both schemes in the same corpus.


2017 ◽  
Vol 24 (1) ◽  
pp. 3-37 ◽  
Author(s):  
SANDRA KÜBLER ◽  
CAN LIU ◽  
ZEESHAN ALI SAYYED

AbstractWe investigate feature selection methods for machine learning approaches in sentiment analysis. More specifically, we use data from the cooking platform Epicurious and attempt to predict ratings for recipes based on user reviews. In machine learning approaches to such tasks, it is a common approach to use word or part-of-speech n-grams. This results in a large set of features, out of which only a small subset may be good indicators for the sentiment. One of the questions we investigate concerns the extension of feature selection methods from a binary classification setting to a multi-class problem. We show that an inherently multi-class approach, multi-class information gain, outperforms ensembles of binary methods. We also investigate how to mitigate the effects of extreme skewing in our data set by making our features more robust and by using review and recipe sampling. We show that over-sampling is the best method for boosting performance on the minority classes, but it also results in a severe drop in overall accuracy of at least 6 per cent points.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


Sign in / Sign up

Export Citation Format

Share Document