Data Management and Security of Big Data in Internet of Things (IOT) Enabled Cyber Physical Systems

2018 ◽  
Vol 15 (11) ◽  
pp. 3218-3222
Author(s):  
R Gifty ◽  
R Bharathi ◽  
P Krishnakumar
2017 ◽  
Vol 75 ◽  
pp. 82-84 ◽  
Author(s):  
Sergio F. Ochoa ◽  
Giancarlo Fortino ◽  
Giuseppe Di Fatta

2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Felipe de Campos Martins ◽  
Alexandre Tadeu Simon ◽  
Renan Stenico de Campos

Abstract: The Supply Chain has undergone major transformations due to the need to implement new Industry 4.0 technologies, such as Internet of Things, Big Data, Cyber-Physical Systems and Cloud Computing. Thanks to these technologies, as well as to their subsystems and components, full integration of the supply chain is becoming possible. However, it is observed that the real impacts of Industry 4.0 technologies, rather positive or negative, are not yet totally clear and identified. This paper aims to identify and present an analysis of the challenges and obstacles that Industry 4.0 technologies may cause in the Supply Chain. For this, the most relevant papers on the topic were selected and analyzed through a systematic literature review. Twenty challenges grouped into four macrogroups were identified: (1) technical challenges, (2) financial, environmental and legal challenges, (3) technological challenges, and (4) sociocultural challenges. It should be noted that these challenges require greater attention and more in-depth studies on the part of the academy to support industry in order to mitigate them and thus allow better use of the available technological resources and optimize the performance of Supply Chain operations.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 18070-18075 ◽  
Author(s):  
Zhihan Lv ◽  
Houbing Song ◽  
Jaime Lloret ◽  
Dongkyun Kim ◽  
Jose-Neuman De Souza

Author(s):  
Anna Smyshlyaeva ◽  
Kseniya Reznikova ◽  
Denis Savchenko

With the advent of the Industry 4.0 concept, the approach to production automation has fundamentally changed. The manufacturing industry is based on such modern technologies as the Internet of Things, Big Data, cloud computing, artificial intelligence and cyber-physical systems. These technologies have proven themselves not only in industry, but also in various other branches of life. In this paper, the authors consider the concept of cyber-physical systems – systems based on the interaction of physical processes with computational ones. The article presents a conceptual model of cyber-physical systems that displays its elements and their interaction. In cyber-physical systems, it represents five levels: physical, network, data storage, processing and analytics level, application level. Cyber-physical systems carry out their work using a basic set of technologies: the Internet of things, big data and cloud computing. Additional technologies are used depending on the purpose of the system. At the physical level, data is collected from physical devices. With the help of the Internet of Things at the network level, data is transferred to a data warehouse for further processing or processed almost immediately thanks to cloud computing. The amount of data in cyber-physical systems is enormous, so it is necessary to use big data technology and effective methods for processing and analyzing this data. The main feature of this technological complex is real-time operation. Despite the improvement in the quality of production and human life, cyber-physical systems have a number of disadvantages. The authors highlight the main problems of cyber-physical systems and promising areas of research for their development. Having solved the listed problems, cyber-physical systems will reach a qualitatively new level of utility. The paper also provides examples of the implementation of concepts such as a smart city, smart grid, smart manufacturing, smart house. These concepts are based on the principle of cyber-physical systems.


2019 ◽  
Vol 9 (6) ◽  
pp. 5056-5061 ◽  
Author(s):  
M. F. Mubarak ◽  
F. A. Shaikh ◽  
M. Mubarik ◽  
K. A. Samo ◽  
S. Mastoi

Business ecosystems are continuously evolving. In this hyper-competitive era, firms are increasingly transforming their business operations through advanced digital technologies. Gone are the days of mere testing and debating the influence of digital transformation and industry 4.0, yet the time has come for actionable steps. Therefore, this study has identified the role of industry 4.0 technologies including big data, cyber-physical systems, internet of things and interoperability, on the performance of Small and Medium-sized Enterprises (SMEs) in Pakistan. A relevant questionnaire was developed and distributed randomly in the cities of Karachi, Lahore, Peshawar, Islamabad, Gujrat, and Sialkot. After applying multiple regression techniques through SPSS, it was found that big data, cyber-physical systems, and interoperability have a significant positive impact to improve business performance, while the insignificant effect of internet of things was revealed. Since the research in the area of digital transformation and industry 4.0 is scant, the current study has contributed novel directions, insights and a framework for future researchers. Moreover, this study will help managers to justify the allocation of resources towards technological infrastructure development in the operations of their firms. Finally, policymakers will find it helpful in order to devise suitable strategies for developing human capital and to enhance their absorptive capacity.


Internet of Things (IoT) or Cyber Physical systems (CPS)denote culmination of inter connected equipment, sub systems, objects and living things with notable identifiers (UIDs) and has the capability to exchange information in the network without human or machine intervention. The real benefit of IoT is to establish a smart communications with the current systems and make the information visible to everyone. This paper discusses various challenges in IoT related to security, data management, identity management and network related issues


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4282
Author(s):  
Eduardo A. Hinojosa-Palafox ◽  
Oscar M. Rodríguez-Elías ◽  
José A. Hoyo-Montaño ◽  
Jesús H. Pacheco-Ramírez ◽  
José M. Nieto-Jalil

The architecture design of industrial data analytics system addresses industrial process challenges and the design phase of the industrial Big Data management drivers that consider the novel paradigm in integrating Big Data technologies into industrial cyber-physical systems (iCPS). The goal of this paper is to support the design of analytics Big Data solutions for iCPS for the modeling of data elements, predictive analysis, inference of the key performance indicators, and real-time analytics, through the proposal of an architecture that will support the integration from IIoT environment, communications, and the cloud in the iCPS. An attribute driven design (ADD) approach has been adopted for architectural design gathering requirements from smart production planning, manufacturing process monitoring, and active preventive maintenance, repair, and overhaul (MRO) scenarios. Data management drivers presented consider new Big Data modeling analytics techniques that show data is an invaluable asset in iCPS. An architectural design reference for a Big Data analytics architecture is proposed. The before-mentioned architecture supports the Industrial Internet of Things (IIoT) environment, communications, and the cloud in the iCPS context. A fault diagnosis case study illustrates how the reference architecture is applied to meet the functional and quality requirements for Big Data analytics in iCPS.


Sign in / Sign up

Export Citation Format

Share Document