Power Factor Correction Using Sensorless Brushless DC Motor with Bridgeless Converter Topology

2020 ◽  
Vol 17 (4) ◽  
pp. 1796-1803
Author(s):  
U. Arunkumar ◽  
G. Radhakrishnan ◽  
S. Boobalan ◽  
J. Kishore

In this paper the regulation of brushless drives is attained by developing a new technique called hysteretic comparator with desirable standard of power at supply mains. By this methodology the composite difference of output due to noises or undulation are avoided and the phase delay is recompensed. Fuzzy logic improves the robustness with enhancement in the consistent performance of the system. The proposed regulator operates in intermittent conduction mode which helps the accomplishment of power factor nearer unity at supply ends. Moreover absence of DBR framework offer minimized switching losses. The proposed system is developed using MATLAB 2013 and with an experiment model. Thus the harmonics are minimized and the compatible limits of various international standards like IEC 61000-3-2 and IEEE-519 standards are attained.

Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

<p>In this paper, a new Buck PFC dc–dc converter topology along with fuzzy logic control for a permanent magnet (PM) brushless dc motor (PMBLDCM) has been proposed. The proposed buck-PFC converter topology is on single stage power factor correction converter. A concept of dc link voltage control which is proportional to speed of the PMBLDCM is used in this paper. The stator currents of the PMBLDCM during step change in the reference speed are controlled within the specified limits by an addition of a rate limiter in the reference dc link voltage. The effectives of the proposed control strategy of PMBLDCM drive is validated through simulation results.</p>


Author(s):  
Sanatan Kumar ◽  
Debanjan Roy ◽  
Madhu Singh

<span>This paper presents a PFC (Power Factor Correction) Cuk converter fed BLDC (Brushless DC) motor drive and the speed of BLDC motor is controlled using fuzzy logic implementation. The PFC converters are employed to enhance the power quality. The Brushless DC motor speed is under the control of DC-bus voltage of VSI-Voltage Source Inverter in which switching of low frequency is used. This helps in the electronic commutation of BLDC motors thus decreasing the switching losses in VSI. A DBR (Diode Bridge Rectifier) next to the PFC Cuk converter controls the voltage at DC link maintaining unity power factor. The characteristics of Cuk converter in four dissimilar modes of operation are studied such as continuous and discontinuous conduction modes (CCM and DCM) respectively. The entire system is simulated using Matlab/Simulink software and the simulation results are reported to verify the performance investigation of the proposed system.</span>


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

<p>In this paper, a new Buck PFC dc–dc converter topology along with fuzzy logic control for a permanent magnet (PM) brushless dc motor (PMBLDCM) has been proposed. The proposed buck-PFC converter topology is on single stage power factor correction converter. A concept of dc link voltage control which is proportional to speed of the PMBLDCM is used in this paper. The stator currents of the PMBLDCM during step change in the reference speed are controlled within the specified limits by an addition of a rate limiter in the reference dc link voltage. The effectives of the proposed control strategy of PMBLDCM drive is validated through simulation results.</p>


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 288 ◽  
Author(s):  
Kuditi Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Jens Holm-Nielsen ◽  
Farooque Azam ◽  
...  

This research work deals with a hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and a fuzzy logic controller (FLC) have been combined and a moth-flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modeling is composed with the power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which results in a low switching operation with fewer switched losses. Here, with the use of a switched inductor, the task and execution of the proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by a proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode (DICM) for achievement of better power factor. MFO is exhibited for gathering of a dataset from the input voltage signal. At that point, separated datasets are sent to the FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of the proposed method, but the power factor broke down. The execution of the proposed control methodology is executed in the MATLAB/Simulink working platform and the display is assessed with the existing techniques.


Author(s):  
K. Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Farooque Azam ◽  
C. Umayal ◽  
...  

This research work deals hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and fuzzy logic controller (FLC) has been combined and moth &ndash;flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modelling is composed with power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which makes low switching operation with less switched losses. Here, with the use of switched inductor, the task and execution of proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode(DICM) for achievement of better power factor.MFO is exhibited for gathering of dataset from the input voltage signal. At that point separated datasets is send to FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of proposed method, the power factor is broke down. The execution of the proposed control methodology is executed in MATLAB/Simulink working platform and the display is assessed with the existing techniques.


Author(s):  
Minal A Bodkhe ◽  
Vaishali Nandanwar

In this paper ,a new approach is presented aim at improving the power factor of three phase bridge inverter that equip with permanent Magnet Brushless DC motor(PMBLDCM)drive through microcontroller. Power factor correction converter is used for feeding a three phase bridge inverter based PMBLDC motor drive. The front end of PFC converter is a diode bridge rectifier fed from a step down transformer. In this three phase bridge inverter is operated as electronic commutator of the PMBLDCM .Nearly sinusoidal input current is achieved using. The proposed PMBLDCM drive with PFC converter is designed to run the motor to desired speed. This scheme improves an efficiency of proposed drive system with PFC feature in wide range of the speed and an input AC voltage.


Sign in / Sign up

Export Citation Format

Share Document