A Robust Approach to Authentication of Handwritten Signature Using Voting Classifier

2020 ◽  
Vol 17 (9) ◽  
pp. 4654-4659
Author(s):  
Kamlesh Kumari ◽  
Sanjeev Rana

This research paper’s main motive is to improve the recognition rate of Offline Signature Verification system. In our research, decisions of three classifiers i.e., Multilayer Perceptron, Random Forest Classifier and Naive Bayes are combined using voting classifier to determine the output. The softwares used for this research are WEKA and Matlab. Performance of this approach is tested on CEDAR dataset for writer dependent model. Overall recognition rate of whole dataset of 55 users is 91.25%. Out of the dataset, the recognition rate of 45 users is above 85%.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elisabeth Sartoretti ◽  
Thomas Sartoretti ◽  
Michael Wyss ◽  
Carolin Reischauer ◽  
Luuk van Smoorenburg ◽  
...  

AbstractWe sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.


Author(s):  
Li Zhu ◽  
Minghu Wu ◽  
Xiangkui Wan ◽  
Nan Zhao ◽  
Wei Xiong

Rapeseed pests will result in a rapeseed production reduction. The accurate identification of rapeseed pests is the foundation for the optimal opportunity for treatment and the use of pesticide pertinently. Manual recognition is labour-intensive and strong subjective. This paper propsed a image recognition method of rapeseed pests based on the color characteristics. The GrabCut algorithm is adopted to segment the foreground from the image of the pets. The noise with small area is filtered out. The benchmark images is obtained from the minimum enclosing rectangle of the rapeseed pests. Two types of color feature description of pests is adopt, one is the three order color moments of the normalized H/S channel; the other is the cross matching index calculated by the reverse projection of the color histogram. A multi-dimensional vector, which is used to train the random forest classifier, is extracted from the color feature of the benchmark image. The recognition results can be obtained by inputing the color features of the image to be detected to the random forest classifier and training.The experiment showed that the proposed method may identify five kinds of rapeseed accurately such as erythema, cabbage caterpillar, colaphellus bowringii baly, flea beetle and aphid with the recognition rate of 96%.


2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Aini Najwa Azmi ◽  
Dewi Nasien ◽  
Azurah Abu Samah

Over recent years, there has been an explosive growth of interest in the pattern recognition. For example, handwritten signature is one of human biometric that can be used in many areas in terms of access control and security. However, handwritten signature is not a uniform characteristic such as fingerprint, iris or vein. It may change to several factors; mood, environment and age. Signature Verification System (SVS) is a part of pattern recognition that can be a solution for such situation. The system can be decomposed into three stages: data acquisition and preprocessing, feature extraction and verification. This paper presents techniques for SVS that uses Freeman chain code (FCC) as data representation. In the first part of feature extraction stage, the FCC was extracted by using boundary-based style on the largest contiguous part of the signature images. The extracted FCC was divided into four, eight or sixteen equal parts. In the second part of feature extraction, six global features were calculated. Finally, verification utilized k-Nearest Neighbour (k-NN) to test the performance. MCYT bimodal database was used in every stage in the system. Based on our systems, the best result achieved was False Rejection Rate (FRR) 14.67%, False Acceptance Rate (FAR) 15.83% and Equal Error Rate (EER) 0.43% with shortest computation, 7.53 seconds and 47 numbers of features.


Automatic Signature Verification system is used to verify whether a signature is genuine or forged. Forged Signatures are those signatures that a person produced by imitating the signature of another person. Automatic Signature Verification is very important as a person’s handwritten signature is used everywhere to authenticate themselves and there is not very much difference between a genuine signature and the imitation of it, i.e. a forged signature. In this work, signature verification is done using different pre-trained Convolutional Neural Networks (CNNs). Convolutional Neural Network has powerful learning ability, and it can be used to distinguish between a genuine and a forged signature automatically. In this experiment, Manipuri signature dataset was used, the dataset was prepared originally and it contains 729 genuine signatures and 243 forged signatures. Features were extracted from pre-trained networks and classification was done using binary Support Vector Machine (SVM) classifier and the performances of the networks were compared. And according to the experiment we achieved a classification accuracy of 84.7 using VGG19 features, accuracy of 86.8 using VGG16 features and accuracy of 81.9 using Alexnet features.


Author(s):  
Kennedy Gyimah ◽  
Justice Kwame Appati ◽  
Kwaku Darkwah ◽  
Kwabena Ansah

In the field of pattern recognition, automatic handwritten signature verification is of the essence. The uniqueness of each person’s signature makes it a preferred choice of human biometrics. However, the unavoidable side-effect is that they can be misused to feign data authenticity. In this paper, we present an improved feature extraction vector for offline signature verification system by combining features of grey level occurrence matrix (GLCM) and properties of image regions. In evaluating the performance of the proposed scheme, the resultant feature vector is tested on a support vector machine (SVM) with varying kernel functions. However, to keep the parameters of the kernel functions optimized, the sequential minimal optimization (SMO) and the least square method was used. Results of the study explained that the radial basis function (RBF) coupled with SMO best support the improved featured vector proposed.


2014 ◽  
Vol 519-520 ◽  
pp. 606-610 ◽  
Author(s):  
Kurban Ubul ◽  
Rayima Ablikim ◽  
Nurbiya Yadikar ◽  
Mavjuda Zunun

Recognition and verification systems plays very critical role in the area of information security as they are very essential to user certification. In resent years, off-line signature recognition and verification receiving renewed interest and only one of several techniques used to verify the identities of individuals, also that one of the biometric techniques. Signatures offer a secure means for confirmation and authorization in legal documents. Thus, nowadays the signature identification and verification becomes an indispensable part for including embedded signatures of automating the rapid processing of documents. Researchers have been proposed various approaches for handwritten signature recognition and verification in the past years. This paper presents a survey for non-western handwritten signature based offline signature verification and identification. In this area, the accuracy rates obtained so far from the available systems is not sufficiently high, and more researches on off-line signature verification as well as off-line signature identification are required.


2018 ◽  
Vol 10 (5) ◽  
pp. 1-12
Author(s):  
B. Nassih ◽  
A. Amine ◽  
M. Ngadi ◽  
D. Naji ◽  
N. Hmina

2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


Sign in / Sign up

Export Citation Format

Share Document