An Embedded Feature Selection and Multi-Class Classification Method for Detection of the Progression from Mild Cognitive Impairment to Alzheimer's Disease

2020 ◽  
Vol 10 (2) ◽  
pp. 370-379 ◽  
Author(s):  
Jie Cai ◽  
Lingjing Hu ◽  
Zhou Liu ◽  
Ke Zhou ◽  
Huailing Zhang

Background: Mild cognitive impairment (MCI) patients are a high-risk group for Alzheimer's disease (AD). Each year, the diagnosed of 10–15% of MCI patients are converted to AD (MCI converters, MCI_C), while some MCI patients remain relatively stable, and unconverted (MCI stable, MCI_S). MCI patients are considered the most suitable population for early intervention treatment for dementia, and magnetic resonance imaging (MRI) is clinically the most recommended means of imaging examination. Therefore, using MRI image features to reliably predict the conversion from MCI to AD can help physicians carry out an effective treatment plan for patients in advance so to prevent or slow down the development of dementia. Methods: We proposed an embedded feature selection method based on the least squares loss function and within-class scatter to select the optimal feature subset. The optimal subsets of features were used for binary classification (AD, MCI_C, MCI_S, normal control (NC) in pairs) based on a support vector machine (SVM), and the optimal 3-class features were used for 3-class classification (AD, MCI_C, MCI_S, NC in triples) based on one-versus-one SVMs (OVOSVMs). To ensure the insensitivity of the results to the random train/test division, a 10-fold cross-validation has been repeated for each classification. Results: Using our method for feature selection, only 7 features were selected from the original 90 features. With using the optimal subset in the SVM, we classified MCI_C from MCI_S with an accuracy, sensitivity, and specificity of 71.17%, 68.33% and 73.97%, respectively. In comparison, in the 3-class classification (AD vs. MCI_C vs. MCI_S) with OVOSVMs, our method selected 24 features, and the classification accuracy was 81.9%. The feature selection results were verified to be identical to the conclusions of the clinical diagnosis. Our feature selection method achieved the best performance, comparing with the existing methods using lasso and fused lasso for feature selection. Conclusion: The results of this study demonstrate the potential of the proposed approach for predicting the conversion from MCI to AD by identifying the affected brain regions undergoing this conversion.

2021 ◽  
Vol 15 ◽  
Author(s):  
Te-Han Kung ◽  
Tzu-Cheng Chao ◽  
Yi-Ru Xie ◽  
Ming-Chyi Pai ◽  
Yu-Min Kuo ◽  
...  

An efficient method to identify whether mild cognitive impairment (MCI) has progressed to Alzheimer’s disease (AD) will be beneficial to patient care. Previous studies have shown that magnetic resonance imaging (MRI) has enabled the assessment of AD progression based on imaging findings. The present work aimed to establish an algorithm based on three features, namely, volume, surface area, and surface curvature within the hippocampal subfields, to model variations, including atrophy and structural changes to the cortical surface. In this study, a new biomarker, the ratio of principal curvatures (RPC), was proposed to characterize the folding patterns of the cortical gyrus and sulcus. Along with volumes and surface areas, these morphological features associated with the hippocampal subfields were assessed in terms of their sensitivity to the changes in cognitive capacity by two different feature selection methods. Either the extracted features were statistically significantly different, or the features were selected through a random forest model. The identified subfields and their structural indices that are sensitive to the changes characteristic of the progression from MCI to AD were further assessed with a multilayer perceptron classifier to help facilitate the diagnosis. The accuracy of the classification based on the proposed method to distinguish whether a MCI patient enters the AD stage amounted to 79.95%, solely using the information from the features selected by a logical feature selection method.


2021 ◽  
Vol 83 (4) ◽  
pp. 1859-1875
Author(s):  
Zihuan Liu ◽  
Tapabrata Maiti ◽  
Andrew R. Bender ◽  

Background: The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical research on Alzheimer’s disease and related dementias. This phenomenon also serves as a valuable data source for quantitative methodological researchers developing new approaches for classification. However, the growth of machine learning (ML) approaches for classification may falsely lead many clinical researchers to underestimate the value of logistic regression (LR), which often demonstrates classification accuracy equivalent or superior to other ML methods. Further, when faced with many potential features that could be used for classifying the transition, clinical researchers are often unaware of the relative value of different approaches for variable selection. Objective: The present study sought to compare different methods for statistical classification and for automated and theoretically guided feature selection techniques in the context of predicting conversion from MCI to dementia. Methods: We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to evaluate different influences of automated feature preselection on LR and support vector machine (SVM) classification methods, in classifying conversion from MCI to dementia. Results: The present findings demonstrate how similar performance can be achieved using user-guided, clinically informed pre-selection versus algorithmic feature selection techniques. Conclusion: These results show that although SVM and other ML techniques are capable of relatively accurate classification, similar or higher accuracy can often be achieved by LR, mitigating SVM’s necessity or value for many clinical researchers.


Author(s):  
Xiaofeng Zhu

In this paper, we propose a new feature selection method to exploit the issue of High Dimension Low Sample Size (HDLSS) for the prediction of Mild Cognitive Impairment (MCI) conversion. Specially, by regarding the Magnetic Resonance Imaging (MRI) information of MCI subjects as the target data, this paper proposes to integrate auxiliary information with the target data in a unified feature selection framework for distinguishing progressive MCI (pMCI) subjects from stable MCI (sMCI) subjects, i.e., the MCI conversion classification for short in this paper, based on their MRI information. The auxiliary information includes the Positron Emission Tomography (PET) information of the target data, the MRI information of Alzheimer’s Disease (AD) subjects and Normal Control (NC) subjects, and the ages of the target data and the AD and NC subjects. As a result, the proposed method jointly selects features from the auxiliary data and the target data by taking into account the influence of outliers and aging of these two kinds of data. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) verified the effectiveness of our proposed method, compared to three state-of-the-art feature selection methods, in terms of four classification evaluation metrics.


2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2018 ◽  
Vol 28 (09) ◽  
pp. 1850022 ◽  
Author(s):  
Olga Valenzuela ◽  
Xiaoyi Jiang ◽  
Antonio Carrillo ◽  
Ignacio Rojas

Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.


2012 ◽  
Vol 119 (7) ◽  
pp. 821-831 ◽  
Author(s):  
Marcin Kruczyk ◽  
Henrik Zetterberg ◽  
Oskar Hansson ◽  
Sindre Rolstad ◽  
Lennart Minthon ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Grueso ◽  
Raquel Viejo-Sobera

Abstract Background An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease dementia. Methods We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer’s disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. Results Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. Conclusions Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.


Sign in / Sign up

Export Citation Format

Share Document