Evaluation and Analysis of Cardiovascular Function in Intensive Care Unit Patients by Ultrasound Image Segmentation Based on Deep Learning

2020 ◽  
Vol 10 (8) ◽  
pp. 1892-1898
Author(s):  
Jiaqi Shen ◽  
Fangfang Huang ◽  
Myers Ulrich

Many studies have shown that cardiovascular disease has become one of the major diseases leading to death in the world. Therefore, it is a very meaningful topic to use image segmentation technology to segment blood vessels for clinical application. In order to automatically extract the features of blood vessel images in the process of segmentation, the deep learning algorithm is combined with image segmentation technology to segment the nerve cell membrane and carotid artery images of ICU patients, and to segment the blood vessel images from a multi-dimensional perspective. The relevant data are collected to observe the effect of this model. The results show that the three-dimensional multi-scale linear filter has a good effect on carotid artery segmentation in the image segmentation of nerve cell membranes and carotid artery. When analyzing the accuracy of vascular image segmentation from network parameters and training parameters, it is found that the accuracy of the threedimensional multi-scale linear filter can reach about 85%. Therefore, it can be found that the combination of deep learning algorithm and image segmentation technology has a good segmentation effect, and the segmentation accuracy is also high. The experiment achieves the desired effect, which provides experimental basis for the clinical application of the vascular image segmentation technology.

Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document