A Facile Synthesis of CuInS2 Nanoparticles from Molecular Single Source Precursors

2007 ◽  
Vol 7 (12) ◽  
pp. 4353-4364 ◽  
Author(s):  
Dimple P. Dutta ◽  
Garima Sharma ◽  
A. K. Tyagi

CuInS2 nanoparticles have been synthesized via solvent thermolysis of novel bimetallic complexes of the general formula [(Ph3P)2 CuIn(S2COR)4] (where R = CH3; C2H5; C(CH3)2; and [(Ph3P)2 CuIn(SCH2CH2S)2]. These complexes have been prepared by the reactions of Na/KS2 COR and NaSCH2 CH2 SNa with InCl3 and [(Ph3 P)2 CuNO3] in methanol, respectively. Solvent thermolyses of these complexes were carried out in ethylene glycol at 196 °C for different time periods. The nanoparticles obtained were characterized extensively by techniques like powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. The optical band gap of the nanoparticles was determined by diffuse reflectance spectroscopy (DRS).

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


2016 ◽  
Vol 4 (18) ◽  
pp. 6946-6954 ◽  
Author(s):  
E. N. K. Glover ◽  
S. G. Ellington ◽  
G. Sankar ◽  
R. G. Palgrave

The nature and effects of rhodium and antimony doping in TiO2 have been investigated using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and diffuse reflectance spectroscopy.


2020 ◽  
Vol 20 (6) ◽  
pp. 1441
Author(s):  
Uyi Sulaeman ◽  
Suhendar Suhendar ◽  
Hartiwi Diastuti ◽  
Roy Andreas ◽  
Shu Yin

The defect and metallic silver (Ag) in silver phosphate (Ag3PO4) photocatalyst were successfully generated using hydroxyapatite (HA) and glucose. Two steps of synthesis were done in these experiments. Firstly, the Ag/HA powder was prepared by reacting AgNO3 and HA, followed by the addition of a glucose solution. Secondly, the suspension of Ag/HA was reacted with AgNO3 aqueous solution. The yellow product of Ag/Ag3PO4 photocatalyst was produced. The products were characterized using X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy (DRS), Scanning Electron Microscope (SEM), Brunauer–Emmett–Teller (BET) and X-ray Photoelectron Spectroscopy (XPS). The decreased ratio of O/Ag and metallic Ag formation observed by the XPS was detected as the possible defect and Ag-doping in the photocatalyst. The enhanced photocatalytic activity might be caused by the oxygen vacancy and metallic Ag in Ag3PO4 that enables the separation of photo-generated electrons and holes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tong-ming Su ◽  
Zu-zeng Qin ◽  
Hong-bing Ji ◽  
Yue-xiu Jiang

With strong adsorption selectivity and thermal stability, Y2O3was added to ZnO to obtain Y2O3-ZnO complex oxides by a precipitation method. The Y2O3-ZnO complex oxides were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, physisorption analyzer, and terephthalic acid photoluminescence probing techniques and were used for the degradation of 2,4-dinitrophenol. More hydroxyl radicals were generated on the surface of the ZnO after adding moderate Y2O3. The Y2O3-ZnO complex oxides which contained 0.50% Y2O3were proved to be the optimal photocatalyst and achieved a degradation of 81.2% of 2,4-dinitrophenol solution, compared to 57.6% achieved under the same photocatalytic conditions with ZnO alone.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Silija Padikkaparambil ◽  
Binitha Narayanan ◽  
Zahira Yaakob ◽  
Suraja Viswanathan ◽  
Siti Masrinda Tasirin

Nanogold doped TiO2catalysts are synthesized, and their application in the photodegradation of dye pollutants is studied. The materials are characterized using different analytical techniques such as X-ray diffraction, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The results revealed the strong interaction between the metallic gold nanoparticles and the anatase TiO2support. Au doped systems showed very good photoactivity in the degradation of dye pollutants under UV irradiation as well as in sunlight. A simple mechanism is proposed for explaining the excellent photoactivity of the systems. The reusability studies of the photocatalysts exhibited more than 98% degradation of the dye even after 10 repeated cycles.


2013 ◽  
Vol 575-576 ◽  
pp. 41-44
Author(s):  
Pei Song Tang ◽  
Ling Xiang Jia ◽  
Jun Yue Zhu ◽  
Zhen Jiang ◽  
Ting Ting Lin ◽  
...  

Using Fe (NO3)39H2O, Y(NO3)36H2O and polyvinyl alcohol as the main raw material, the YFeO3 nanoparticles were prepared by a microwave process. The YFeO3 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the perovskite structureYFeO3 can be obtained, and the resulting product has a particle size of 70 nm and an optical band gap of 2.4 eV. The recovery of YFeO3 photocatalysts was performed by the photocatalytic experiment of load YFeO3. It is found that YFeO3 nanocrystalline photocatalysts can be efficiently recovered by magnetic polymer film load.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jin-Hua Cai ◽  
Jin-Wang Huang ◽  
Han-Cheng Yu ◽  
Liang-Nian Ji

In order to utilize visible light more efficiently in the photocatalytic reaction, microspheres sensitized by 5-(4-allyloxy)phenyl-10,15,20-tri(4-methylphenyl)porphyrin (APTMPP) were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and UV-vis diffuse reflectance spectroscopy, and so forth, The characterization results indicated that APTMPP-MPS- was composed of the anatase crystal phase. The morphology of the composite materials was spheriform with size of 0.3–0.7 μm and the porphyrin was chemisorbed on the surface of through a Si–O–Ti bond. The photooxidation ofα-terpinene was employed as the model reaction to evaluate the photocatalytic activity of APTMPP-MPS- microspheres under visible light. The results indicated that the photodegradation ofα-terpinene was significantly enhanced in the presence of the APTMPP-MPS- compared with the nonmodified under visible light.


2011 ◽  
Vol 396-398 ◽  
pp. 854-857 ◽  
Author(s):  
Zheng Hua Xiao ◽  
Jun Bo Zhong ◽  
Jian Zhang Li ◽  
Wei Hu

It has been found that the photocatalytic activity of ZnO toward the decolorization of Methyl Orange solution can be greatly improved by loading Ag on the surface of ZnO using a photodeposition method. The photocatalysts were characterized by X-ray diffraction(XRD), UV-Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy(XPS), respectively. 0.5%Ag/ZnO demonstrates 2.13 times the photocatalytic activity of pure ZnO.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2016 ◽  
Vol 35 (6) ◽  
pp. 559-566 ◽  
Author(s):  
Elaheh Esmaeili ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari ◽  
Kamal Saberyan

AbstractPbS nanostructures were synthesized successfully via hydrothermal approach with a new precursor. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS). The effect of different sulfur sources were investigated on product size and morphology.


Sign in / Sign up

Export Citation Format

Share Document