Synthesis and Properties of Magnetite Nanoparticles Coated with Poly(ethylene glycol) and Poly(ethylene imine)

2013 ◽  
Vol 13 (10) ◽  
pp. 6793-6797 ◽  
Author(s):  
Fangyuan Zhao ◽  
Baolin Zhang ◽  
Jun Wang ◽  
Zhijiang Tu
Polymer ◽  
2008 ◽  
Vol 49 (18) ◽  
pp. 3950-3956 ◽  
Author(s):  
Siraprapa Meerod ◽  
Gamolwan Tumcharern ◽  
Uthai Wichai ◽  
Metha Rutnakornpituk

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2566
Author(s):  
Ahmad Zarour ◽  
Suheir Omar ◽  
Raed Abu-Reziq

The development process of catalytic core/shell microreactors, possessing a poly(ethylene glycol) (PEG) core and a polyurea (PU) shell, by implementing an emulsion-templated non-aqueous encapsulation method, is presented. The microreactors’ fabrication process begins with an emulsification process utilizing an oil-in-oil (o/o) emulsion of PEG-in-heptane, stabilized by a polymeric surfactant. Next, a reaction between a poly(ethylene imine) (PEI) and a toluene-2,4-diisocyanate (TDI) takes place at the boundary of the emulsion droplets, resulting in the creation of a PU shell through an interfacial polymerization (IFP) process. The microreactors were loaded with palladium nanoparticles (NPs) and were utilized for the hydrogenation of alkenes and alkynes. Importantly, it was found that PEG has a positive effect on the catalytic performance of the developed microreactors. Interestingly, besides being an efficient green reaction medium, PEG plays two crucial roles: first, it reduces the palladium ions to palladium NPs; thus, it avoids the unnecessary use of additional reducing agents. Second, it stabilizes the palladium NPs and prevents their aggregation, allowing the formation of highly reactive palladium NPs. Strikingly, in one sense, the suggested system affords highly reactive semi-homogeneous catalysis, whereas in another sense, it enables the facile, rapid, and inexpensive recovery of the catalytic microreactor by simple centrifugation. The durable microreactors exhibit excellent activity and were recycled nine times without any loss in their reactivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1238
Author(s):  
Viktoriia Oleksa ◽  
Iveta Bernátová ◽  
Vitalii Patsula ◽  
Silvia Líšková ◽  
Peter Bališ ◽  
...  

In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol) terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles, designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration (1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition, Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure regulation, vascular function, and RBCs in hypertensive rats.


Sign in / Sign up

Export Citation Format

Share Document