High Density Gold Nanoparticles Within Three-Dimensionally Mesoporous SBA-15: Adsorption Behavior and Optical Properties

2015 ◽  
Vol 15 (9) ◽  
pp. 7060-7067 ◽  
Author(s):  
Xiaojuan Wang ◽  
Xiaoqing Yan ◽  
Renhong Li ◽  
Liping Xiao ◽  
Guicen Ma ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tetsuya Kouno ◽  
Masaru Sakai ◽  
Katsumi Kishino ◽  
Akihiko Kikuchi ◽  
Naoki Umehara ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41427-021-00298-9


2010 ◽  
Vol 19 (03) ◽  
pp. 427-436
Author(s):  
A. MENDOZA-GARCÍA ◽  
A. ROMERO-DEPABLOS ◽  
M. A. ORTEGA ◽  
J. L. PAZ ◽  
L. ECHEVARRÍA

We have developed an analytical method to describe the optical properties of nanoparticles, whose results are in agreement with the observed experimental behavior according to the size of the nanoparticle under analysis. Our considerations to describe plasmonic absorption and dispersion are based on the combination of the two-level molecular system and the two-dimensional quantum box models. Employing the optical stochastic Bloch equations, we have determined the system's coherence, from which we have calculated expressions for the absorption coefficient and refractive index. The innovation of this methodology is that it allows us to take into account the solvent environment, which induce quantum effects not considered by classical treatments.


2014 ◽  
Vol 1700 ◽  
pp. 79-82 ◽  
Author(s):  
Yuan Li ◽  
Nitin Chopra

ABSTRACTWe report simulation of optical properties of hybrid geometry comprised of multilayer graphene shell encapsulated gold nanoparticles loaded with carbon nanotubes. The discrete dipole approximation (DDA) method was employed. The results indicated that the optical properties of encapsulated gold nanoparticles were not suppressed by the carbon material coating. Furthermore, low scattering effects were also observed. The simulation method helped visualize the near-surface normalized electric field, which is directly related to the intensity of hot spots on the surface of these hybrid nanoarchitectures.


Nano Letters ◽  
2006 ◽  
Vol 6 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Colleen L. Nehl ◽  
Hongwei Liao ◽  
Jason H. Hafner

Sign in / Sign up

Export Citation Format

Share Document