Au@Y2O3:Eu3+ rare earth oxide hollow sub-microspheres with encapsulated gold nanoparticles and their optical properties

2009 ◽  
Vol 11 (1) ◽  
pp. 96-101 ◽  
Author(s):  
Yu-Lin Min ◽  
Yong Wan ◽  
Shu-Hong Yu
1981 ◽  
Vol 20 (10) ◽  
pp. 1755 ◽  
Author(s):  
T. Marcinow ◽  
K. Truszkowska

2001 ◽  
Vol 702 ◽  
Author(s):  
Richard Weber ◽  
Johan Abadie ◽  
Thomas Key ◽  
April Hixson ◽  
Paul Nordine ◽  
...  

ABSTRACTRare-earth-aluminum oxide-composition glass fibers 5-50 μm in diameter and containing up to 50 mole % rare-earth oxide were drawn from undercooled liquids 550-650 K below the equilibrium melting point. The fibers have tensile strengths of ∼6 GPa, glass transition temperatures of ∼1150 K, and infrared transmission up to ∼5500 nm. The optical properties of erbium-doped fibers containing up to 12.5 mole % Er2O3 were investigated. The 1/e lifetime of the 4I13/2 excited state was 0.8-7 ms, decreasing with increasing Er concentration. Amplified spontaneous emission measurements indicate extremely broadband spectra, up to 135 nm (3-dB width) in 0.5 mole % fibers. Although this result is encouraging, the gain bandwidth, which has not been measured, is likely narrower. Glass fibers were crystallized by heat treatment under tension at temperatures of 1300-1900 K to form flexible, creep resistant polycrystalline monofilaments with tensile strengths up to 2.4 GPa.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110077
Author(s):  
Chao Du ◽  
Cuirong Liu ◽  
Xu Yin ◽  
Haocheng Zhao

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO2, using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO2. This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.


Sign in / Sign up

Export Citation Format

Share Document