scholarly journals High Density Nanostructured Soft Ferrites Prepared by High Pressure Field Assisted Sintering Technique

2019 ◽  
Vol 19 (8) ◽  
pp. 4974-4979
Author(s):  
M Petrecca ◽  
M Albino ◽  
I. G Tredici ◽  
U Anselmi-Tamburini ◽  
M Passaponti ◽  
...  
2017 ◽  
Vol 5 (35) ◽  
pp. 9028-9036 ◽  
Author(s):  
M. Airimioaei ◽  
M. T. Buscaglia ◽  
I. Tredici ◽  
U. Anselmi-Tamburini ◽  
C. E. Ciomaga ◽  
...  

SrTiO3–BaTiO3 nanocomposite fabricated by high-pressure field-assisted sintering exhibits temperature-stable dielectric permittivity, low losses and acceptable tunability.


2012 ◽  
Vol 27 (15) ◽  
pp. 1975-1981 ◽  
Author(s):  
Filippo Maglia ◽  
Ilenia G. Tredici ◽  
Giorgio Spinolo ◽  
Umberto Anselmi-Tamburini

Abstract


2021 ◽  
Vol 54 (19) ◽  
pp. 194006
Author(s):  
Angelica Baldini ◽  
Michele Petrecca ◽  
Claudio Sangregorio ◽  
Umberto Anselmi-Tamburini

2019 ◽  
Vol 247 ◽  
pp. 155-158 ◽  
Author(s):  
Alexander M. Laptev ◽  
Hao Zheng ◽  
Martin Bram ◽  
Martin Finsterbusch ◽  
Olivier Guillon

2021 ◽  
Vol 23 (15) ◽  
pp. 9325-9336
Author(s):  
Akio Yoshinaka ◽  
Serge Desgreniers ◽  
Anguang Hu

Raman and IR vibrational spectra confirm two molecular units associated with the monoclinic unit cell of nitroethane under high pressure. Raman spectra are extremely sensitive to predicted effects of unit cell distortion due to changes in H-bonding.


Author(s):  
Vasily Astanin ◽  
Dmitry Gunderov ◽  
Zhi Qiang Ren ◽  
Ruslan Valiev ◽  
Jing Tao Wang

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 40
Author(s):  
Marc Röthlisberger ◽  
Marcel Schuck ◽  
Laurenz Kulmer ◽  
Johann W. Kolar

Acoustic levitation forces can be used to manipulate small objects and liquid without mechanical contact or contamination. To use acoustic levitation for contactless robotic grippers, automated insertion of objects into the acoustic pressure field is necessary. This work presents analytical models based on which concepts for the controlled insertion of objects are developed. Two prototypes of acoustic grippers are implemented and used to experimentally verify the lifting of objects into the acoustic field. Using standing acoustic waves and by dynamically adjusting the acoustic power, the lifting of high-density objects (>7 g/cm3) from acoustically transparent surfaces is demonstrated. Moreover, a combination of different acoustic traps is used to lift lower-density objects from acoustically reflective surfaces. The provided results open up new possibilities for the implementation of acoustic levitation in robotic grippers, which have the potential to be used in a variety of industrial applications.


2021 ◽  
Author(s):  
Papa Aye N. Aye-Addo ◽  
Guillermo Paniagua ◽  
David G. Cuadrado ◽  
Lakshya Bhatnagar ◽  
Antonio Castillo Sauca ◽  
...  

Abstract Optical measurements based on fast response Pressure Sensitive Paint (PSP) provide enhanced spatial resolution of the pressure field. This paper presents laser lifetime PSP at 20 kHz, with precise calibrations, and results from a demonstration in an annular vane cascade. The laser lifetime PSP methodology is first evaluated in a linear wind tunnel with a converging-diverging nozzle followed by a wavy surface. This test section is fully optically accessible with maximum modularity. A data reduction procedure is proposed for the PSP calibration, and optimal pixel binning is selected to reduce the uncertainty. In the annular test section, laser lifetime PSP was used to measure the time-averaged static pressure field on a section of the suction surface of a high-pressure turbine vane. Tests were performed at engine representative conditions in the Purdue Big Rig for Annular Stationary Turbine Analysis module at the Purdue Experimental Turbine Aerothermal Lab. The 2-D pressure results showed a gradual increase of pressure in the spanwise and flow directions, corroborated with local static pressure taps and computational results. The variation in PSP thickness was measured as a contribution to the uncertainty. The discrete Fourier transform of the unsteady pressure signal showed increased frequency content in wind-on conditions compared to wind-off conditions at the mid-span and 30% span. Compared to the mid-span region, the hub end wall region had an increase in frequencies and pressure amplitude. This result was anticipated given the expected presence of secondary flow structures in the near hub region.


SPE Journal ◽  
2018 ◽  
Vol 24 (05) ◽  
pp. 2033-2046 ◽  
Author(s):  
Hu Jia ◽  
Yao–Xi Hu ◽  
Shan–Jie Zhao ◽  
Jin–Zhou Zhao

Summary Many oil and gas resources in deep–sea environments worldwide are often located in high–temperature/high–pressure (HT/HP) and low–permeability reservoirs. The reservoir–pressure coefficient usually exceeds 1.6, with formation temperature greater than 180°C. Challenges are faced for well drilling and completion in these HT/HP reservoirs. A solid–free well–completion fluid with safety density greater than 1.8 g/cm3 and excellent thermal endurance is strongly needed in the industry. Because of high cost and/or corrosion and toxicity problems, the application of available solid–free well–completion fluids such as cesium formate brines, bromine brines, and zinc brines is limited in some cases. In this paper, novel potassium–based phosphate well–completion fluids were developed. Results show that the fluid can reach the maximum density of 1.815 g/cm3 at room temperature, which makes a breakthrough on the density limit of normal potassium–based phosphate brine. The corrosion rate of N80 steel after the interaction with the target phosphate brine at a high temperature of 180°C is approximately 0.1853 mm/a, and the regained–permeability recovery of the treated sand core can reach up to 86.51%. Scanning–electron–microscope (SEM) pictures also support the corrosion–evaluation results. The phosphate brine shows favorable compatibility with the formation water. The biological toxicity–determination result reveals that it is only slightly toxic and is environmentally acceptable. In addition, phosphate brine is highly effective in inhibiting the performance of clay minerals. The cost of phosphate brine is approximately 44 to 66% less than that of conventional cesium formate, bromine brine, and zinc brine. This study suggests that the phosphate brine can serve as an alternative high–density solid–free well–completion fluid during well drilling and completion in HT/HP reservoirs.


Sign in / Sign up

Export Citation Format

Share Document