Synthesis of Nanocomposites of V2OO5©Selenium Nanoparticles and Multiwalled Carbon Nanotubes for Antimicrobial Activity

2021 ◽  
Vol 21 (11) ◽  
pp. 5673-5680
Author(s):  
Muthukrishnan Francklin Philips ◽  
Jothirathinam Thangarathinam ◽  
Jayakumar Princy ◽  
Cyril Arockiaraj Crispin Tina ◽  
Cyril Arockiaraj Crispin Tina ◽  
...  

The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V2O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V2O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V2O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V2O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V2O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V2O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V2O5@Se NPs/MWCNTs.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
T. Minh Nguyet Nguyen ◽  
Vinh-Dat Vuong ◽  
Mai Thanh Phong ◽  
Thang Van Le

Molybdenum disulfide (MoS2), an inorganic-layered material similar to structure of graphite, was randomly dispersed onto the surface of functionalized multiwalled carbon nanotubes to synthesized nanocomposite MoS2/CNT. The as-obtained product was characterized via SEM, TEM, TGA, X-ray diffraction, and Raman spectroscopies. It was confirmed from XRD that MoS2 layers with interlayer spacing of 0.614 nm were successfully produced. TEM images and Raman spectra indicated a random distribution of 20 nm sized nanoflake MoS2 on the surface of MWNTs. The electrochemical performance of materials are expected to pave the way for the utilized anode material for lithium-ion batteries.


2009 ◽  
Vol 72 (1) ◽  
pp. 145-151 ◽  
Author(s):  
J. Cambedouzou ◽  
V. Heresanu ◽  
C. Castro ◽  
M. Pinault ◽  
F. Datchi ◽  
...  

2020 ◽  
Vol 234 (1) ◽  
pp. 11-26
Author(s):  
Noor Saeed Khattak ◽  
Mohammad Saleem Khan ◽  
Luqman Ali Shah ◽  
Muhammad Farooq ◽  
Abdullah Khan ◽  
...  

AbstractHere in this study timing saving, easy and cost effective methods has been applied for fabricating the dielectric energy storage materials. Ceramic nanoparticles (FLZC’s) have been successfully synthesized by Sol-Gel method and its nanocomposites with non-conducting polymers (PVP, PVA, PEG, PEO) and multiwalled carbon nanotubes (MWCNT’s) by one-pot blending technique. Energy dispersive x-ray diffraction (EDX), x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA/DTA), AC impedance analyzer and dielectric properties were determined for all the samples. Dielectric properties showed good agreement with that of energy storage substances for electronic device fabrication. High dielectric constant was achieved when 0.5 wt% MWCNT’s was added to FLZC’s/MWCNT’s/Polymer nanocomposites. The stability and performance of the nanocomposites were dependent on the type of polymer used. These preparation materials can be employed in functional materials, such as high charge-storage capacitors, electrostriction for artificial muscles and smart skins etc.


2001 ◽  
Vol 64 (7) ◽  
Author(s):  
Yutaka Maniwa ◽  
Ryuji Fujiwara ◽  
Hiroshi Kira ◽  
Hideki Tou ◽  
Eiji Nishibori ◽  
...  

2015 ◽  
Vol 1094 ◽  
pp. 222-228
Author(s):  
Lei Zhou ◽  
Da Wei He ◽  
Hong Lu Wu ◽  
Zeng Hui Qiu

A facile synthesis method of three dimensional reduced graphene oxide (RGO)/multiwalled carbon nanotubes (MWCNTs) hydrogel was introduced. Hydrogel samples which were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and examined by X-ray diffraction (XRD) have been used as the electrode of supercapacitor. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) were used to investigate the Supercapacitors which we have fabricated. Because MWCNTs inserting into layers of RGO homogeneously prevent the layers of RGO from stacking and enlarge the specific surface area of graphene, the specific capacitance of RGO/MWCNTs material has been greatly improved. At the current density of 0.2A/g, the specific capacitance of RGO/MWCNTs electrode is about 176F/g, which means a 52% increasement compared to which of pure RGO material electrode. And the specific capacitance of RGO/MWCNTs also achieves a good rate property.


2018 ◽  
Vol 32 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Zahra Rafiee ◽  
Milad Kolaee

The chiral poly(amide-imide) (PAI) was synthesized by the direct polycondensation reaction of imide-dicarboxylic acid, N-trimellitylimido-l-phenylalanine with diamine and 1,5-naphthalenediamine. Multiwalled carbon nanotubes (MWCNTs)/polymer composite films were prepared via dispersing of acid-functionalized MWCNTs (MWCNT-COOH) as reinforcement at MWCNT loadings of 5, 10, and 15 wt%. The PAI/MWCNT composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). The TEM results confirmed that the carboxylated MWCNTs were well dispersed in the polymer matrix. The thermogravimetric analysis data showed an improvement of thermal stability of composites containing the MWCNT as compared to the pure polymer. In this research, PAI/MWCNT composite 15 wt% was used as a novel and efficient adsorbent for removal of malachite green dye from aqueous solution.


2018 ◽  
Vol 106 (9) ◽  
pp. 719-731 ◽  
Author(s):  
Kun Tian ◽  
Jinling Wu ◽  
Jianlong Wang

Abstract The adsorptive extraction of uranium (VI) was investigated using multiwalled carbon nanotubes functionalized with dihydroimidazole (DIM-MWCNTs). Dihydroimidazole was grafted onto the surface of MWCNTs via silane coupling agent, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole. The new adsorbent was characterized using Fourier transform infrared, scanning electron microscope and X-ray Photoelectron Spectroscopy. DIM-MWCNTs were compared with MWCNTs and amidoxime modified MWCNTs (AO-MWCNTs) for uranium adsorption under seawater conditions. The adsorption capacity of uranium onto DIM-MWCNTs was 54.9 mg g−1 at 298 K, which was about 4 times of MWCNTs and similar to that of AO-MWCNTs. Compared with AO-MWCNTs, DIM-MWCNTs were more suitable for seawater pH, and less affected by vanadium. Although DIM-MWCNTs were more affected by carbonate than AO-MWCNTs, DIM-MWCNTs maintained a higher adsorption capacity than AO-MWCNTs due to its alkali resistance. Pyridine-like nitrogen (CH=N–CH) contributed to the adsorption of uranium. The results suggested that DIM-MWCNTs were a potential effective adsorbent for the separation of uranium under seawater condition.


Sign in / Sign up

Export Citation Format

Share Document