scholarly journals Ion Slip and Hall Effects on Generalized Time-Dependent Hydromagnetic Couette Flow of Immiscible Micropolar and Dusty Micropolar Fluids with Heat Transfer and Dissipation: A Numerical Study

2021 ◽  
Vol 10 (3) ◽  
pp. 431-446
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
O. Anwar Bég

The hydrodynamics of immiscible micropolar fluids are important in a variety of engineering problems, including biofluid dynamics of arterial blood flows, pharmacodynamics, Principle of Boundary layers, lubrication technology, short waves for heat-conducting fluids, sediment transportation, magnetohydrodynamics, multicomponent hydrodynamics, and electrohydrodynamic. Motivated by the development of biological fluid modeling and medical diagnosis instrumentation, this article examines the collective impacts of ion slip, viscous dissipation, Joule heating, and Hall current on unsteady generalized magnetohydrodynamic (MHD) Couette flow of two immiscible fluids. Two non-Newtonian incompressible magnetohydrodynamic micropolar and micropolar dusty (fluid-particle suspension) fluids are considered in a horizontal duct with heat transfer. No-slip boundary conditions are assumed at the channel walls and constant pressure gradient. Continuous shear stress and fluid velocity are considered across the interface between the two immiscible fluids. The coupled partial differential equations are formulated for fluids and particle phases and the velocities, temperatures, and microrotation profiles are obtained. Under the physically realistic boundary and interfacial conditions, the Modified cubic-Bspline differential quadrature approach (MCB-DQM) is deployed to obtain numerical results. The influence of the magnetic, thermal, and other pertinent parameters, i.e. Hartmann magnetic number, Eckert (dissipation) number, Reynolds number, Prandtl number, micropolar material parameters, Hall and ion-slip parameters, particle concentration parameter, viscosity ratio, density ratio, and time on velocity, microrotation, and temperature characteristics are illustrated through graphs. The MCB-DQM is found to be in good agreement with accuracy and the skin friction coefficient and Nusselt number are also explored. It is found that fluids and particle velocities are reduced with increasing Hartmann numbers whereas they are elevated with increment in ion-slip and Hall parameters. Temperatures are generally enhanced with increasing Eckert number and viscosity ratio. The simulations are relevant to nuclear heat transfer control, MHD energy generators, and electromagnetic multiphase systems in chemical engineering.

2021 ◽  
Vol 39 (4) ◽  
pp. 1180-1196
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi

In this paper, the unsteady magnetohydrodynamic (MHD) Couette flow of two non-Newtonian immiscible fluids micropolar and micropolar dusty (fluid-particle suspension) are considered in the horizontal channel with heat transfer. A comprehensive mathematical model and computational simulation with the modified cubic B-Spline-Differential Quadrature method (MCB-DQM) is described for unsteady flow. The coupled partial differential equation for fluid and particle-phase are formulated and the effect of viscous dissipation, Joule heating, Hall current, and other hydrodynamic and solutal parameters i. e. Reynolds number, Eckert number, particle concentration parameter, Eringen micropolar material parameter, time, viscosity ratio, and density ratio on the flow rate, micro rotation, and temperature characteristics were investigated. The analysis of obtained results reveals that the fluids and particle velocities are slightly decreasing with Hartmann number, and increasing with time, ion-slip, and Hall parameters. Microrotation declined with Microrotations dropped significantly with ion-slip and Hall parameter and grown Hartman number. The temperature begins to rise as time, Hartman number, and Eckert number grow and declined with Ion-slip and Hall parameter.


Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


2021 ◽  
Vol 321 ◽  
pp. 04007
Author(s):  
Abdelkader Boutra ◽  
Seddik Kherroubi ◽  
Abderrahmane Bourada ◽  
Youb Khaled Benkahla ◽  
Nabila Labsi ◽  
...  

Flow and heat transfer analysis in ventilated cavities is one of the most widely studied problems in thermo-fluids area. Two-dimensional mixed convection in a ventilated rectangular cavity with baffles is studied numerically and the fluid considered in this study is hot air (Pr = 0.71). The horizontal walls are maintained at a constant temperature, higher than that imposed on the vertical ones. Two very thin heat-conducting baffles are inserted inside the enclosure, on its horizontal walls, to control the flow of convective fluid. The governing equations are discretized using the finite volume method and the SIMPLER algorithm to treat the coupling velocity–pressure. Line by line method is used to solve iteratively the algebraic equations. The effect of the Richardson number Ri (0.01- 100) and the location of the baffles within the cavity on the isothermal lines, streamlines distributions and the average Nusselt number (Nu) has been investigated. The result shows that the location opposite the baffles, close to the fluid outlet, is the optimal choice to be considered for industrial applications.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2021 ◽  
Vol 408 ◽  
pp. 67-82
Author(s):  
Basant Kumar Jha ◽  
Muhammad Kabir Musa ◽  
Abiodun O. Ajibade

Recently, heat transfer problems where anisotropic porous medium or stably stratified fluid are taken into account have been separately studied. Developing a mathematical model that combines these physical quantities naturally results to complex coupled differential equations. In this paper, a fully developed time dependent natural convection Couette flow of stably stratified fluid between vertical parallel channels filled with anisotropic porous material is investigated. The governing partial differential equations are transformed into ordinary differential equations using Laplace transform techniques and then decoupled using D’Alembert method. Exact solutions in Laplace domain for the velocity and temperature equations are then obtained. A numerical method: Riemann-sum approximation is then used to invert the expressions for the velocity and temperature profiles, as well as the resulting skin friction, rate of heat transfer and volumetric mass flow rate into their corresponding time domain. The research establishes that both the anisotropic and the stratification parameters aid in regulating the fluid temperature and velocity. The research further reveals that the fluid velocity attains its maximum (or minimum) velocity when θ = 900 (or θ = 00) for k*<1 and when k*>1, the fluid velocity is least (or maximum) when θ = 900 (or θ = 00).


1985 ◽  
Vol 150 ◽  
pp. 381-394 ◽  
Author(s):  
Yuriko Renardy ◽  
Daniel D. Joseph

We consider the flow of two immiscible fluids lying between concentric cylinders when the outer cylinder is fixed and the inner one rotates. The interface is assumed to be concentric with the cylinders, and gravitational effects are neglected. We present a numerical study of the effect of different viscosities, different densities and surface tension on the linear stability of the Couette flow. Our results indicate that, with surface tension, a thin layer of the less-viscous fluid next to either cylinder is linearly stable and that it is possible to have stability with the less dense fluid lying outside. The stable configuration with the less-viscous fluid next to the inner cylinder is more stable than the one with the less-viscous fluid next to the outer cylinder. The onset of Taylor instability for one-fluid flow may be delayed by the addition of a thin layer of less-viscous fluid on the inner wall and promoted by a thin layer of more-viscous fluid on the inner wall.


2009 ◽  
Vol 640 ◽  
pp. 235-264 ◽  
Author(s):  
SHAOPING QUAN ◽  
DAVID P. SCHMIDT ◽  
JINSONG HUA ◽  
JING LOU

The relaxation and breakup of an elongated droplet in a viscous and initially quiescent fluid is studied by solving the full Navier–Stokes equations using a three-dimensional finite volume method coupled with a moving mesh interface tracking (MMIT) scheme to locate the interface. The two fluids are assumed incompressible and immiscible. The interface is represented as a surface triangle mesh with zero thickness that moves with the fluid. Therefore, the jump and continuity conditions across the interface are implemented directly, without any smoothing of the fluid properties. Mesh adaptations on a tetrahedral mesh are employed to permit large deformation and to capture the changing curvature. Mesh separation is implemented to allow pinch-off. The detailed investigations of the relaxation and breakup process are presented in a more general flow regime compared to the previous works by Stone & Leal (J. Fluid Mech., vol. 198, 1989, p. 399) and Tong & Wang (Phys. Fluids, vol. 19, 2007, 092101), including the flow field of the both phases. The simulation results reveal that the vortex rings due to the interface motion and the conservation of mass play an important role in the relaxation and pinch-off process. The vortex rings are created and collapsed during the process. The effects of viscosity ratio, density ratio and length ratio on the relaxation and breakup are studied. The simulations indicate that the fluid velocity field and the neck shape are distinctly different for viscosity ratios larger and smaller than O(1), and thus a different end-pinching mechanism is observed for each regime. The length ratio also significantly affects the relaxation process and the velocity distributions, but not the neck shape. The influence of the density ratio on the relaxation and breakup process is minimal. However, the droplet evolution is retarded due to the large density of the suspending flow. The formation of a satellite droplet is observed, and the volume of the satellite droplet depends strongly on the length ratio and the viscosity ratio.


Sign in / Sign up

Export Citation Format

Share Document