scholarly journals Regional Model Simulations of the Bodélé Low-Level Jet of Northern Chad during the Bodélé Dust Experiment (BoDEx 2005)

2008 ◽  
Vol 21 (5) ◽  
pp. 995-1012 ◽  
Author(s):  
Martin C. Todd ◽  
Richard Washington ◽  
Srivatsan Raghavan ◽  
Gil Lizcano ◽  
Peter Knippertz

Abstract The low-level jet (LLJ) over the Bodélé depression in northern Chad is a newly identified feature. Strong LLJ events are responsible for the emission of large quantities of mineral dust from the depression, the world’s largest single dust source, and its subsequent transport to West Africa, the tropical Atlantic, and beyond. Accurate simulation of this key dust-generating atmospheric feature is, therefore, an important requirement for dust models. The objectives of the present study are (i) to evaluate the ability of regional climate models (RCMs) and global analyses/reanalyses to represent this feature, and (ii) to determine the driving mechanisms of the LLJ and its strong diurnal cycle. Observational data obtained during the Bodélé Dust Experiment (BoDEx 2005) are utilized for comparison. When suitably configured, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) RCM can represent very accurately many of the key features of the jet including the structure, diurnal cycle, and day-to-day variability. Surface winds are also well reproduced, including the peak winds, which activate dust emission. Model fidelity is, however, strongly dependent on the boundary layer parameterization scheme, surface roughness, and vertical resolution in the lowest layers. A model horizontal resolution of a few tens of kilometers is sufficient to resolve most of the key features of the LLJ, while in global analyses/reanalyses many features of the LLJ are not adequately represented. Idealized RCM simulations indicate that under strong synoptic forcing the surrounding orography of the Tibesti and Ennedi Mountains acts to focus the LLJ onto the Bodélé and to accelerate the jet by ∼40%. From the RCM experiments it is diagnosed that the pronounced diurnal cycle of the Bodélé LLJ is largely a result of varying eddy viscosity, with elevated heating/cooling over the Tibesti Mountains to the north as a second-order contribution.

2010 ◽  
Vol 67 (8) ◽  
pp. 2690-2699 ◽  
Author(s):  
Thomas R. Parish ◽  
Larry D. Oolman

Abstract The summertime Great Plains low-level jet (LLJ) has been the subject of numerous investigations during the past several decades. Characteristics of the LLJ include nighttime development of a pronounced wind maximum of typically 15–20 m s−1 at levels 300–800 m above the surface and a clockwise rotation of the wind maximum during the course of the night. Maximum frequency of occurrence of the LLJ is found in the southern Great Plains. Theories proposed to explain the diurnal wind maximum of the Great Plains LLJ include inertial oscillation of the ageostrophic wind, the diurnal oscillation of the horizontal pressure field associated with heating and cooling of the sloping terrain, and the western boundary current interpretations. A simple equation system and output from the 12-km horizontal resolution Weather Research and Forecasting Nonhydrostatic Mesoscale Model (NAM) for July 2008 are used to provide evidence as to the importance of the Great Plains topography in driving the LLJ. Summertime heating of the sloping terrain is critical in establishing the climatological position for the Great Plains LLJ. Heating enhances the background geostrophic flow associated with the Bermuda high, resulting in a maximum low-level mean summertime flow over the Great Plains region. Maximum geostrophic winds in the NAM are found during late afternoon, providing a large background wind on which frictional decoupling can act. The nighttime LLJ maximum is the result of an inertial oscillation of the unbalanced components that arise fundamentally from frictional decoupling. Diurnal heating of the sloping terrain forces a cycle in the geostrophic wind that is out of phase with the wind maximum.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


2021 ◽  
Author(s):  
Juan Sierra ◽  
Jhan Carlo Espinoza ◽  
Clementine Junquas ◽  
Jan Polcher ◽  
Miguel Saavedra ◽  
...  

<p>The Amazon rainforest is a key component of the climate system and one of the main planetary evapotranspiration sources. Over the entire Amazon basin, strong land-atmosphere feedbacks cause almost one third of the regional rainfall to be transpired by the local rainforest. Maximum precipitation recycling ratio takes place on the southwestern edge of the Amazon basin (a.k.a. Amazon-Andes transition region), an area recognized as the rainiest and biologically richest of the whole watershed. Here, high precipitation rates lead to large values of runoff per unit area providing most of the sediment load to Amazon rivers. As a consequence, the transition region can potentially be very sensitive to Amazonian forest loss. In fact, recent acceleration in deforestation rates has been reported over tropical South America. These sustained land-cover changes can alter the regional water and energy balances, as well as the regional circulation and rainfall patterns. In this sense, the use of regional climate models can help to understand the possible impacts of deforestation on the Amazon-Andes zone.</p><p>This work aims to assess the projected Amazonian deforestation effects on the moisture transport and rainfall behavior over tropical South America and the Amazon-Andes transition region. We perform 10-year austral summer simulations with the Weather Research and Forecasting model (WRF) using 3 one-way nested domains. Our finest domain is located over the south-western part of the basin, comprising two instrumented Andean Valleys (Zongo and Coroico river Valleys). Convective permitting high horizontal resolution (1km) is used over this domain. The outcomes presented here enhance the understanding of biosphere-atmosphere coupling and its deforestation induced disturbances.</p>


2019 ◽  
Author(s):  
Minchao Wu ◽  
Grigory Nikulin ◽  
Erik Kjellström ◽  
Danijel Belušić ◽  
Colin Jones ◽  
...  

Abstract. We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs – SMHI-RCA4 and HCLIM38-ALADIN are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100 and 200 km. Additionally to the two RCMs, two different configurations of the same RCA4 are used. Contrasting different RCMs, configurations and resolutions it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle is completely controlled by model formulation (convection scheme) while its amplitude is a function of resolution. Although higher resolution in many cases leads to smaller biases in the time mean climate, the impact of higher resolution is mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). The experiments confirm a pronounced and well known impact of higher resolution – a more realistic distribution of daily precipitation. Even if the time-mean climate is not always greatly sensitive to resolution, what the time-mean climate is made up of, higher order statistics, is sensitive. Therefore, the realism of the simulated precipitation increases as resolution increases. Our results show that improvements in the ability of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases are simply related to model formulation and not necessarily to higher resolution. Such model formulation related improvements are strongly model dependent and in general cannot be considered as an added value of downscaling.


2003 ◽  
Vol 131 (8) ◽  
pp. 1895-1909 ◽  
Author(s):  
Da-Lin Zhang ◽  
Wei-Zhong Zheng ◽  
Yong-Kang Xue

Abstract The Pennsylvania State University–NCAR Mesoscale Model (MM5) and a simplified simple biosphere (SSiB) scheme are modified and then coupled to study various regional climate and weather problems. These modifications include correcting the moisture and cloud hydrometeor fields to ensure the mass conservation; incorporating the effects of dissipative heating to ensure total energy conservation; decoupling soil and vegetation types in specifying various surface parameters; and eliminating the shortwave radiation reaching the surface at points where deep convection occurs. A 30-day integration of June 1998 over the Midwest states was used to examine the model's capability in capturing the observed wet regional climate and the passage of several mesoscale weather events. It is found that the coupled model reproduces the distribution and magnitude of monthly accumulated precipitation, the time series of area-integrated precipitation, surface pressures, and diurnal changes in surface temperatures, low-level winds and precipitation, as well as the evolution of precipitation systems across the central United States. In particular, the model reproduces well many daily weather events, including the distribution and intensity of low-level temperature and pressure perturbations and precipitation, even up to a month. The results suggest that the daily temperature, clouds, and precipitation events from the weekly to monthly scales, as well as their associated regional climate phenomena, could be reasonably simulated if the surface, boundary layer, radiation, and convective processes are realistically parameterized, and the large-scale forcing could be reasonably provided by general circulation models.


2012 ◽  
Vol 8 (1) ◽  
pp. 27-31 ◽  
Author(s):  
J. Mazón ◽  
D. Pino

Abstract. The night of 14 December 2010 radar images of the Spanish Weather Agency recorded a large rain band that moved offshore at the Northeast coast of the Iberian Peninsula. MM5 mesoscale model is used to study the atmospheric dynamics during that day. A Nocturnal Low Level Jet (NLLJ) generated by an inertial oscillation that brings cold air to the coast from inland has been simulated in the area. This cold air interacts with a warmer air mass some kilometers offshore. According to the MM5 mesoscale model simulation, the cold air enhances upward movements of the warm air producing condensation. Additionally, there is a return flow to the coastline at 600–900 m high. This warm air mass interacts again with the cold air moving downslope, also producing condensation inland. The simulation for the night before this episode shows large drainage winds with a NLLJ profile, but no condensation areas. The night after the 14th the simulation also shows drainage winds but without a NLLJ profile. However, an offshore convergence area was produced with a returned flow, but no condensation inland occurred. This fact is in agreement with radar observations which reported no precipitation for these two days. Consequently, NLLJ in combination with a synoptic wind over the sea could enhance condensation and eventually precipitation rates in the Mediterranean Iberian coast.


2021 ◽  
Author(s):  
Silje Lund Sørland ◽  
Roman Brogli ◽  
Praveen Kumar Pothapakula ◽  
Emmanuele Russo ◽  
Jonas Van de Walle ◽  
...  

Abstract. In the last decade, the Climate Limited-area Modeling (CLM) Community has contributed to the Coordinated Re- gional Climate Downscaling Experiment (CORDEX) with an extensive set of regional climate simulations. Using several versions of the COSMO-CLM community model, ERA-Interim reanalysis and eight Global Climate Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were dynamically downscaled with horizontal grid spacings of 0.44° (∼50 km), 0.22° (∼25 km) and 0.11° (∼12 km) over the CORDEX domains Europe, South Asia, East Asia, Australasia and Africa. This major effort resulted in 80 regional climate simulations publicly available through the Earth System Grid Fed- eration (ESGF) web portals for use in impact studies and climate scenario assessments. Here we review the production of these simulations and assess their results in terms of mean near-surface temperature and precipitation to aid the future design of the COSMO-CLM model simulations. It is found that a domain-specific parameter tuning is beneficial, while increasing horizontal model resolution (from 50 to 25 or 12 km grid spacing) alone does not always improve the performance of the simulation. Moreover, the COSMO-CLM performance depends on the driving data. This is generally more important than the dependence on horizontal resolution, model version and configuration. Our results emphasize the importance of performing regional climate projections in a coordinated way, where guidance from both the global (GCM) and regional (RCM) climate modelling communities is needed to increase the reliability of the GCM-RCM modelling chain.


2008 ◽  
Vol 3 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Masaomi Nakamura ◽  
◽  
Sachie Kaneda ◽  
Yasutaka Wakazuki ◽  
Chiashi Muroi ◽  
...  

Under the Kyosei-4 Project, unprecedented high resolution global and regional climate models were developed on the Earth Simulator to investigate the effect of global warming on tropical cyclones, baiu frontal rainfall systems, and heavy rainfall events that could not be resolved using conventional climate models.For the regional climate model, a nonhydrostatic model (NHM) with a horizontal resolution of 5 km was developed to be used in the simulation of heavy rainfall during the baiu season in Japan. Simulations in June and July were executed for 10 years in present and future global warming climates. It was found that, due to global warming, mean rainfall is projected to increase except in eastern and northern Japan, the frequency of heavy rainfall events would increase and its increment rate become higher for heavier rainfall, and return values for extreme rainfall would grow.Experiments using an NHM with a horizontal resolution of 1 km were conducted to study the effects of resolution. Compared to 5 km resolution, it expresses the organization of rainfall systems causing heavy rainfall and the appearance-frequency distribution of rainfall for variable intensities more realistically.


Sign in / Sign up

Export Citation Format

Share Document