Atlantic Dominance of the Meridional Overturning Circulation

2008 ◽  
Vol 38 (2) ◽  
pp. 435-450 ◽  
Author(s):  
A. M. de Boer ◽  
J. R. Toggweiler ◽  
D. M. Sigman

Abstract North Atlantic (NA) deep-water formation and the resulting Atlantic meridional overturning cell is generally regarded as the primary feature of the global overturning circulation and is believed to be a result of the geometry of the continents. Here, instead, the overturning is viewed as a global energy–driven system and the robustness of NA dominance is investigated within this framework. Using an idealized geometry ocean general circulation model coupled to an energy moisture balance model, various climatic forcings are tested for their effect on the strength and structure of the overturning circulation. Without winds or a high vertical diffusivity, the ocean does not support deep convection. A supply of mechanical energy through winds or mixing (purposefully included or due to numerical diffusion) starts the deep-water formation. Once deep convection and overturning set in, the distribution of convection centers is determined by the relative strength of the thermal and haline buoyancy forcing. In the most thermally dominant state (i.e., negligible salinity gradients), strong convection is shared among the NA, North Pacific (NP), and Southern Ocean (SO), while near the haline limit, convection is restricted to the NA. The effect of a more vigorous hydrological cycle is to produce stronger salinity gradients, favoring the haline state of NA dominance. In contrast, a higher mean ocean temperature will increase the importance of temperature gradients because the thermal expansion coefficient is higher in a warm ocean, leading to the thermally dominated state. An increase in SO winds or global winds tends to weaken the salinity gradients, also pushing the ocean to the thermal state. Paleoobservations of more distributed sinking in warmer climates in the past suggest that mean ocean temperature and winds play a more important role than the hydrological cycle in the overturning circulation over long time scales.

2005 ◽  
Vol 18 (19) ◽  
pp. 4013-4031 ◽  
Author(s):  
Johann H. Jungclaus ◽  
Helmuth Haak ◽  
Mojib Latif ◽  
Uwe Mikolajewicz

Abstract Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning circulation (MOC) contributes substantially to sea surface temperature and sea ice fluctuations in the North Atlantic. The strength of the overturning circulation is related to the convective activity in the deep-water formation regions, most notably the Labrador Sea, and the time-varying control on the freshwater export from the Arctic to the convection sites modulates the overturning circulation. The variability is sustained by an interplay between the storage and release of freshwater from the central Arctic and circulation changes in the Nordic Seas that are caused by variations in the Atlantic heat and salt transport. The relatively high resolution in the deep-water formation region and the Arctic Ocean suggests that a better representation of convective and frontal processes not only leads to an improvement in the mean state but also introduces new mechanisms determining multidecadal variability in large-scale ocean circulation.


2017 ◽  
Vol 98 (4) ◽  
pp. 737-752 ◽  
Author(s):  
M. Susan Lozier ◽  
Sheldon Bacon ◽  
Amy S. Bower ◽  
Stuart A. Cunningham ◽  
M. Femke de Jong ◽  
...  

Abstract For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. Li ◽  
M. S. Lozier ◽  
S. Bacon ◽  
A. S. Bower ◽  
S. A. Cunningham ◽  
...  

AbstractChanges in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.


2021 ◽  
Vol 17 (2) ◽  
pp. 615-632
Author(s):  
Frerk Pöppelmeier ◽  
Jeemijn Scheen ◽  
Aurich Jeltsch-Thömmes ◽  
Thomas F. Stocker

Abstract. The response of the Atlantic Meridional Overturning Circulation (AMOC) to freshwater perturbations critically depends on its mean state. Large swaths of icebergs melting in the North Atlantic during the last deglaciation constituted such perturbations and can, thus, provide important constraints on the stability of the AMOC. However, the mean AMOC state during the Last Glacial Maximum (LGM), preceding the rapid disintegration of the ice sheets during the deglaciation, as well as its response to these perturbations remain debated. Here, we investigate the evolution of the AMOC as it responds to freshwater perturbations under improved LGM boundary conditions in the Bern3D intermediate complexity model. Particularly, we consider the effect of an open versus a closed Bering Strait and the effect of increased tidal dissipation as a result of the altered bathymetry due to the lower glacial sea level stand. The vigorous and deep AMOC under these glacial boundary conditions, consistent with previous simulations with different models, reacts more strongly to North Atlantic freshwater forcings than under preindustrial conditions. This increased sensitivity is mostly related to the closed Bering Strait that cuts off the freshwater escape route through the Arctic into the Pacific, thereby facilitating faster accumulation of freshwater in the North Atlantic and halting deep-water formation. Proxy reconstructions of the LGM AMOC instead indicate a weaker and possibly shallower AMOC than today, which is in conflict with the particularly strong and deep circulation states coherently simulated with ocean circulation models for the LGM. Simulations with reduced North Atlantic deep-water formation, as a consequence of potentially increased continental runoff from ice sheet melt and imposed changes in the hydrological cycle, more closely resemble the overturning circulation inferred from proxies. These circulation states also show bistable behavior, where the AMOC does not recover after North Atlantic freshwater hosing. However, no AMOC states are found here that either comprise an extreme shoaling or vigorous and concurrent shallow overturning as previously proposed based on paleoceanographic data.


Ocean Science ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 227-241 ◽  
Author(s):  
K. Lohmann ◽  
J. H. Jungclaus ◽  
D. Matei ◽  
J. Mignot ◽  
M. Menary ◽  
...  

Abstract. We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.


2005 ◽  
Vol 35 (10) ◽  
pp. 1813-1825 ◽  
Author(s):  
Julie Deshayes ◽  
Claude Frankignoul

Abstract The response of the upper limb of the meridional overturning circulation to the variability of deep-water formation is investigated analytically with a linear, reduced-gravity model in basins of simple geometry. The spectral characteristics of the model response are first derived by prescribing white-noise fluctuations in the meridional transport at the northern boundary. Although low-frequency basin modes are solutions to the eigenproblem, they are too dissipative to be significantly excited by the boundary forcing, and the thermocline depth response has a red spectrum with no prevailing time scale other than that of a high-frequency equatorial mode, only flattening at the millennial time scale because of vertical diffusivity. The meridional transport is asymmetric about the equator because the northern part of the basin is directly influenced by the boundary forcing while the southern part is mostly set in motion by long Rossby waves. This results in the equator acting as a low-pass filter for the Southern Hemisphere, which clarifies the so-called buffering effect of the equator. In a basin connected by a southern circumpolar channel, the thermocline depth and the transport spectra are redder than in the forced basin and, when a somewhat more realistic stochastic forcing derived from general circulation model simulations is considered, the variability is strongly reduced at high frequency. The linear model qualitatively explains several features of the low-frequency variability of the meridional overturning circulation in climate models, such as its red spectrum and its larger intensity in the North Atlantic Ocean.


2017 ◽  
Author(s):  
Baohuang Su ◽  
Dabang Jiang ◽  
Ran Zhang ◽  
Pierre Sepulchre ◽  
Gilles Ramstein

Abstract. The role of the Tibetan Plateau (TP) in maintaining large-scale overturning circulation in the Atlantic and Pacific is investigated using a coupled atmosphere–ocean model. For the present day with a realistic topography, model simulation shows a strong Atlantic meridional overturning circulation (AMOC) but a near absence of a Pacific meridional overturning circulation (PMOC), which is in good agreement with present observations. In contrast, the simulation without the TP depicts a collapsed AMOC and a strong PMOC that dominates deep water formation. The switch in deep water formation between the two basins results from changes in the large-scale atmospheric circulation and atmosphere–ocean feedback in the Atlantic and Pacific. The intensified westerly winds and increased freshwater flux over the North Atlantic cause an initial slowdown of the AMOC, but the weakened East Asian monsoon circulation and associated decreased freshwater flux over the North Pacific enhance initial intensification of the PMOC. The further decreased heat flux and the associated increase in sea-ice fraction promote the final AMOC collapse over the Atlantic, while the further increased heat flux leads to the final PMOC establishment over the Pacific. Although the simulations were done in a cold world, it still importantly implicates that the uplift of the TP alone could have been a potential driver for the reorganization of PMOC–AMOC between the Late Eocene and Early Oligocene.


2011 ◽  
Vol 24 (11) ◽  
pp. 2814-2829 ◽  
Author(s):  
Andreas Schmittner ◽  
Tiago A. M. Silva ◽  
Klaus Fraedrich ◽  
Edilbert Kirk ◽  
Frank Lunkeit

Abstract The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ~25% and shifts them poleward by ~10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.


2020 ◽  
Author(s):  
Chao Min ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Frank Kauker ◽  
Robert Ricker

Abstract. Sea ice in Baffin Bay plays an important role in the deep water formation in the Labrador Sea and contributes to the variation of the Atlantic meridional overturning circulation (AMOC) on larger scales. To quantify the sea ice volume variations in Baffin Bay, a major driver of the deep water formation, three state-of-the-art sea ice models (CMST, NAOSIM, and PIOMAS) are investigated in the melt and freezing season from 2011 to 2016. An ensemble of three estimates of the sea ice volume fluxes in Baffin Bay is generated from the three modeled sea ice thickness and NSIDC satellite derived ice drift data. Results show that the net increase of the ensemble mean sea ice volume (SIV) in Baffin Bay occurs from October to April with the largest SIV increase in December (116 ± 16 km3 month−1) and the reduction occurs from May to September with the largest SIV decline in July (−160 ± 32 km3 month−1). The maximum SIV inflow occurs in winter in all the model data consistently. The ensemble mean SIV inflow (322 ± 4 km3) reaches its maximum in winter 2013 caused by high ice velocities while the largest SIV outflow (244 ± 61 km3) occurs in spring of 2014. The long-term annual mean ice volume inflow and outflow are 437(± 53) km3 and 339(± 68) km3, respectively. Our analysis also reveals that on average, sea ice in Baffin Bay melts from May to October with a net reduction of 335 km3 in volume while it freezes from November to April with a net increase of 251 km3.


Sign in / Sign up

Export Citation Format

Share Document