Concerning the Measurement and Magnitude of Heat, Water Vapor, and Carbon Dioxide Exchange from a Semiarid Grassland

2009 ◽  
Vol 48 (5) ◽  
pp. 982-996 ◽  
Author(s):  
Joseph G. Alfieri ◽  
Peter D. Blanken ◽  
David Smith ◽  
Jack Morgan

Abstract Grassland environments constitute approximately 40% of the earth’s vegetated surface, and they play a key role in a number of processes linking the land surface with the atmosphere. To investigate these linkages, a variety of techniques, including field and modeling studies, are required. Using data collected at the Central Plains Experimental Range (CPER) in northeastern Colorado from 25 March to 10 November 2004, this study compares two common ways of measuring turbulent fluxes of latent heat, sensible heat, and carbon dioxide in the field: the eddy covariance (EC) and Bowen ratio energy balance (BREB) methods. The turbulent fluxes measured by each of these methods were compared in terms of magnitude and seasonal behavior and were combined to calculate eddy diffusivities and examine turbulent transport. Relative to the EC method, the BREB method tended to overestimate the magnitude of the sensible heat, latent heat, and carbon dioxide fluxes. As a result, substantial differences in both the diurnal pattern and long-term magnitudes of the water and carbon budgets were apparent depending on which method was used. These differences arise from (i) the forced closure of the surface energy balance and (ii) the assumption of similarity between the eddy diffusivities required by the BREB method. An empirical method was developed that allows the BREB and EC datasets to be reconciled; this method was tested successfully using data collected at the CPER site during 2005. Ultimately, however, the BREB and EC methods show important differences that must be recognized and taken into account when analyzing issues related to the energy, water, or carbon cycles.

2012 ◽  
Vol 16 (7) ◽  
pp. 2095-2107 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates – up till present – cannot be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a large aperture scintillometer (LAS), and converting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then compared to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, the performance of ETLook for the energy balance terms has been assessed at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown.


2011 ◽  
Vol 8 (6) ◽  
pp. 10863-10894 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates can – up till present – not be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a Large Aperture Scintillometer (LAS), and inverting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes (H) measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then validated by comparing them to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, it is demonstrated that ETLook is able to estimate the energy balance terms for daily time steps at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown. As such, ETLook provides the opportunity to estimate continuous series of the energy balance terms of a large area for daily time steps and can thus e.g. be used as a validation tool for LAS-measurements, whereas LAS is able to estimate the latent heat fluxes (evapotranspiration rates) for a large and heterogeneous catchment at an hourly time step which can be used for the forcing or validation of hydrologic models.


2012 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Jamal Ezzahar ◽  
Salah Er-Raki ◽  
Hamid Marah ◽  
Said Khabba ◽  
Noureddine Amenzou ◽  
...  

Simple soil-vegetation-transfer (SVAT) and energy balance models were used to estimate the surface turbulent fluxes (<em>i.e. </em>sensible and latent heat fluxes) over a complex olive grove using thermal infra-red surface temperature (TIRST). This approach used a dual source SVAT model to calculate the sensible heat fluxes from radiometric surface temperature. These fluxes were then used together with the estimates of the available energy also derived from TIRST to estimate the latent heat flux by applying the first law of thermodynamics <em>i.e.</em> the conservation of energy principle. The data used to validate this approach were collected over an irrigated olive grove site located in central Morocco near Marrakech. Mass and energy fluxes, as well as micrometeorological parameters, were continuously measured during the year 2003. The comparison between estimated and measured daily sensible heat fluxes yielded an acceptable agreement in spite of the complexity of the study surface with a correlation coefficient (R<sup>2</sup>=0.86) and root mean square error (RMSE) of 28 Wm<sup>-2</sup>. For the latent heat fluxes, the statistical result for the comparison between estimated and measured daily values showed a larger scatter than that revealed for the sensible heat fluxes (R<sup>2</sup>=0.75; RMSE=31.42 Wm<sup>-2</sup>). However, the correspondence is to be considered acceptable given the difficulty in estimating latent heat flux over such a complex field. Therefore, it can be concluded that, in spite of the simplicity of the proposed approach, it can be considered a suitable tool for estimating the turbulent fluxes using TIRST over complex surfaces.


2018 ◽  
Author(s):  
Phillip Harder ◽  
John W. Pomeroy ◽  
Warren D. Helgason

Abstract. Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a conceptual frozen soil infiltration surface water retention model to estimate the areal average sensible and latent heat advection contributions to snowmelt. The proposed model compared well with observations of latent and sensible heat advection providing confidence in the process parameterizations and the assumptions applied. Snowcovered area observations from unmanned aerial vehicle imagery were used to update and evaluate the scaling properties of snow patch area distribution and lengths. Model dynamics and snowmelt implications were explored within an idealized modelling experiment, by coupling to a one-dimensional energy balance snowmelt model. Dry, snow-free surfaces were associated with negative latent heat advection fluxes that compensated for positive sensible heat advection fluxes and so limited the net influence of advection on snowmelt. Latent and sensible heat advection fluxes both contributed positive fluxes to snow when snow-free surfaces were wet and enhanced net advection contributions to snowmelt. The increased net advection fluxes from wet surfaces typically develop towards the end of snowmelt and offset decreases in the one-dimensional areal average melt energy that declines with snowcovered area. The new model can be readily incorporated into existing one-dimensional snowmelt hydrology and land surface scheme models and will foster improvements in snowmelt understanding and predictions.


2014 ◽  
Vol 11 (16) ◽  
pp. 4507-4519 ◽  
Author(s):  
T. S. El-Madany ◽  
H. F. Duarte ◽  
D. J. Durden ◽  
B. Paas ◽  
M. J. Deventer ◽  
...  

Abstract. Sodar (SOund Detection And Ranging), eddy-covariance, and tower profile measurements of wind speed and carbon dioxide were performed during 17 consecutive nights in complex terrain in northern Taiwan. The scope of the study was to identify the causes for intermittent turbulence events and to analyze their importance in nocturnal atmosphere–biosphere exchange as quantified with eddy-covariance measurements. If intermittency occurs frequently at a measurement site, then this process needs to be quantified in order to achieve reliable values for ecosystem characteristics such as net ecosystem exchange or net primary production. Fourteen events of intermittent turbulence were identified and classified into above-canopy drainage flows (ACDFs) and low-level jets (LLJs) according to the height of the wind speed maximum. Intermittent turbulence periods lasted between 30 and 110 min. Towards the end of LLJ or ACDF events, positive vertical wind velocities and, in some cases, upslope flows occurred, counteracting the general flow regime at nighttime. The observations suggest that the LLJs and ACDFs penetrate deep into the cold air pool in the valley, where they experience strong buoyancy due to density differences, resulting in either upslope flows or upward vertical winds. Turbulence was found to be stronger and better developed during LLJs and ACDFs, with eddy-covariance data presenting higher quality. This was particularly indicated by spectral analysis of the vertical wind velocity and the steady-state test for the time series of the vertical wind velocity in combination with the horizontal wind component, the temperature, and carbon dioxide. Significantly higher fluxes of sensible heat, latent heat, and shear stress occurred during these periods. During LLJs and ACDFs, fluxes of sensible heat, latent heat, and CO2 were mostly one-directional. For example, exclusively negative sensible heat fluxes occurred while intermittent turbulence was present. Latent heat fluxes were mostly positive during LLJs and ACDFs, with a median value of 34 W m−2, while outside these periods the median was 2 W m−2. In conclusion, intermittent turbulence periods exhibit a strong impact on nocturnal energy and mass fluxes.


2005 ◽  
Vol 121 (1) ◽  
pp. 89-110 ◽  
Author(s):  
W. M. L. Meijninger ◽  
F. Beyrich ◽  
A. Lüdi ◽  
W. Kohsiek ◽  
H. A. R. De. Bruin

2018 ◽  
Vol 33 (3) ◽  
pp. 537-546 ◽  
Author(s):  
Paulo Jorge de Oliveira Ponte de Souza ◽  
Juliana Chagas Rodrigues ◽  
Adriano Marlisom Leão de Sousa ◽  
Everaldo Barreiros de Souza

Abstract This study aimed to evaluate the diurnal energy balance during the reproductive stage of two growing seasons of a mango orchard in the northeast of Pará, Brazil. Therefore, a micrometeorological tower was installed and instrumented, in the center of the experimental area, to monitor meteorological variables, besides the phenological evaluation of the mango orchard, which was carried out during growing seasons of 2010-2011 (October 2010 to January 2011) and of 2011-2012 (September 2011 to January 2012). The energy balance was obtained by the bowen ration technique, and the available energy partitioned into heat flux to the ground, sensible heat and latent heat. The amount of rainfall was crucial to the partition of the net radiation in the energy balance components. It provided the variation in the consumption of available energy between 69% and 78% as latent heat flux, and between 23% and 32% as sensible heat flux. The heat flux to the ground was small, representing less than 1% of the net radiation, showing that the mango orchard exhibits good soil cover preventing large variations in soil heating.


2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


2020 ◽  
Author(s):  
Matěj Orság ◽  
Milan Fischer ◽  
Josef Eitzinger ◽  
Miroslav Trnka

&lt;p&gt;In this study we compare turbulent energy fluxes obtained from eddy covariance (EC) (LI-7500A, LI-COR + Windmaster, Gill Instruments) and large aperture scintillometer (BLS900, Scintec) over an agricultural field (wheat field, straw and bare soil). As the EC method provides direct measurements of sensible heat (H&lt;sub&gt;EC&lt;/sub&gt;) and latent heat (LE&lt;sub&gt;EC&lt;/sub&gt;) fluxes we use it as a reference method. The EC method enables to determine fluxes within a footprint centered around the point of measurement in the middle of the field. The scintillometer provides an estimation of sensible heat flux (H&lt;sub&gt;SC&lt;/sub&gt;), derived from air refractive index fluctuation integrated over the measurement path length, in this case 570 m diagonally across whole field. The reference measurements of the radiation balance components consist of 4-component net radiometer for net radiation (Rn) (NR01, Hukseflux), three soil heat flux plates for soil heat flux (G) monitoring (HFP01, Hukseflux), including thermocouples for quantification of the heat storage above the soil heat flux plates. The scintillometer-based latent heat (LE&lt;sub&gt;SC&lt;/sub&gt;) is calculated as a residuum from available energy (Rn-G) and H&lt;sub&gt;SC&lt;/sub&gt;, provided by scintillometer. The measurement of radiation balance components was located at the top of 3.5 m mast with the EC system, while the soil heat flux plates were collocated around in 5 cm depth. The site is a flat, rectangular agricultural field (app. 16.5 ha), in the north-eastern Austria, Danube river lowland (48.21N, 16.622E), sown with winter wheat during growing season 2019. The measurement campaign was established in February 2019 with aim for multi-seasonal monitoring. The EC measurement height is 2.7 m, the scintillometer transmitter and receiver are fixed on 4 m masts, facing towards each other from NW and SE corners of the field.&lt;/p&gt;&lt;p&gt;Comparison of the EC-based turbulent fluxes (H&lt;sub&gt;EC&lt;/sub&gt;+LE&lt;sub&gt;EC&lt;/sub&gt;) and the available energy (Rn-G) during the period March to Mid-June showed a very good agreement, resulting in the energy balance closure of 0.96 (R&lt;sup&gt;2 &lt;/sup&gt;= 0.93). This suggest high accuracy and robustness of the measurement setup together with the ability of the EC method to capture all scales of eddies responsible for energy transport at this site. The comparison of methods indicates that H&lt;sub&gt;SC&lt;/sub&gt; overestimated H&lt;sub&gt;EC&lt;/sub&gt; by 10 % (R&lt;sup&gt;2 &lt;/sup&gt;= 0.74) and LE&lt;sub&gt;SC&lt;/sub&gt; underestimated LE&lt;sub&gt;EC&lt;/sub&gt; by 13 % (R&lt;sup&gt;2 &lt;/sup&gt;= 0.81). Related to Rn, the H&lt;sub&gt;EC&lt;/sub&gt;, LE&lt;sub&gt;EC&lt;/sub&gt; and G fluxes accounted for 22 % (R&lt;sup&gt;2 &lt;/sup&gt;= 0.53), 59 % (R&lt;sup&gt;2 &lt;/sup&gt;= 0.70) and 15% (R&lt;sup&gt;2 &lt;/sup&gt;= 0.62) of the Rn flux, respectively. We assume that the combination of EC and scintillometer method has a potential to bring deeper insight into the analysis of the energy balance closure problem.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document