Seasonal Influence of the Quasi-Biennial Oscillation on Stratospheric Jets and Rossby Wave Breaking

2009 ◽  
Vol 66 (4) ◽  
pp. 935-946 ◽  
Author(s):  
Matthew H. Hitchman ◽  
Amihan S. Huesmann

Abstract The influence of the stratospheric quasi-biennial oscillation (QBO) on the polar night jets (PNJs), subtropical easterly jets (SEJs), and associated Rossby wave breaking (RWB) is investigated using global meteorological analyses spanning 10 recent QBO cycles. The seasonal dependence of the descent of the QBO is shown by using five layered shear indices. It is found that the influence of the QBO is distinctive for each combination of QBO phase, season, and hemisphere (NH or SH). The following QBO westerly (W) minus easterly (E) differences in the PNJs were found to be significant at the 97% level: When a QBO W (E) maximum is in the lower stratosphere (∼500 K or ∼50 hPa), the NH winter PNJ is stronger (weaker), in agreement with previous results (mode A). Mode A does not appear to operate in other seasons in the NH besides DJF or in the SH in any season. When a QBO W (E) maximum is in the middle stratosphere (∼700–800 K or ∼10–20 hPa), the PNJ in the SH spring is stronger (weaker), also in agreement with previous results (mode B). It is found that mode B also operates in the NH spring. A third distinctive mode is found during autumn in both hemispheres: a QBO W (E) maximum in the middle stratosphere coincides with a weaker (stronger) PNJ (mode C). The signs of wind anomalies are the same at low and high latitudes for modes A and B, but are opposite for mode C. This sensitive dependence on QBO phase and season is consistent with the nonlinear nature of the interaction between planetary waves and the shape of the seasonal wind structures. During the solstices the meridional circulation associated with QBO connects primarily with the winter hemisphere, whereas during the equinoxes it is more symmetric about the equator. QBO W enhance the equatorial potential vorticity (PV) gradient maximum, but the time-mean maximum may be related to chronic instabilities in the subtropics. The equatorial PV gradient maximum and flanking RWB tend to be more pronounced in the Eastern Hemisphere in stratospheric analyses. When QBO W are in the middle stratosphere, the flanking PV gradient minima (SEJs) are enhanced and RWB is more frequent and symmetric about the equator. When QBO W are in the upper stratosphere, a strong seasonal asymmetry is seen, with enhanced RWB in the summer SEJ, primarily during boreal winter. This is consistent with an upward increase of summer to winter flow and modulation by a strong “first” and weak “second” semiannual oscillation.

2017 ◽  
Vol 74 (6) ◽  
pp. 1735-1755 ◽  
Author(s):  
Erik T. Swenson ◽  
David M. Straus

Abstract The occurrence of boreal winter Rossby wave breaking (RWB) along with the quantitative role of synoptic transient eddy momentum and heat fluxes directly associated with RWB are examined during the development of Euro-Atlantic circulation regimes using ERA-Interim. Results are compared to those from seasonal reforecasts made using the Integrated Forecast System model of ECWMF coupled to the NEMO ocean model. The development of both Scandinavian blocking and the Atlantic ridge is directly coincident with anticyclonic wave breaking (AWB); however, the associated transient eddy fluxes do not contribute to (and, in fact, oppose) ridge growth, as indicated by the local Eliassen–Palm (EP) flux divergence. Evidently, other factors drive development, and it appears that wave breaking assists more with ridge decay. The growth of the North Atlantic Oscillation (NAO) in its positive phase is independent of RWB in the western Atlantic but strongly linked to AWB farther downstream. During AWB, the equatorward flux of cold air at upper levels contributes to a westerly tendency just as much as the poleward flux of momentum. The growth of the negative phase of the NAO is almost entirely related to cyclonic wave breaking (CWB), during which equatorward momentum flux dominates at jet level, yet low-level heat fluxes dominate below. The reforecasts yield realistic frequencies of CWB and AWB during different regimes, as well as realistic estimates of their roles during development. However, a slightly weaker role of RWB is simulated, generally consistent with a weaker anomalous circulation.


2011 ◽  
Vol 24 (8) ◽  
pp. 2134-2146 ◽  
Author(s):  
Yi-Hui Wang ◽  
Gudrun Magnusdottir

Abstract An objective analysis of tropospheric anticyclonic- and cyclonic-breaking Rossby waves is performed for the Southern Hemisphere in austral summer (December–February) of 1979–2009. The climatology of both anticyclonic and cyclonic Rossby wave breaking (RWB) frequency is presented. The frequency of anticyclonic RWB is highest in an extended region of the Eastern Hemisphere on the anticyclonic side of the jet, while that of cyclonic RWB is highest on the cyclonic side of the jet. A composite analysis of anticyclonic and cyclonic RWB shows how they contribute to a positive and negative southern annual mode (SAM) index, respectively. The time series of austral summer anticyclonic RWB occurrence has a trend that closely matches the trend in the SAM index. Regions of RWB that are significantly correlated with the SAM index are objectively determined. Even though several such regions are identified, only two regions (anticyclonic and cyclonic) covering 17% of the area of the hemisphere are required in a linear regression model of the SAM index. The anticyclonic RWB region is zonally extended at 45°S and explains 78% of the variability of the summer-mean SAM index. The cyclonic region is located at high latitudes somewhat decoupled from the jet, in the longitudinal sector of the Indian Ocean. On synoptic time scales, transitions of the SAM index respond to RWB without time lag. ENSO cycles present an interesting zonal asymmetry to the distribution of Southern Hemispheric RWB in the central Pacific. Anticyclonic RWB is increased in the tropical/subtropical central Pacific during La Niña compared to El Niño. This increase is related to the strong local decrease in zonal wind. At the same time, anticyclonic RWB outside the central Pacific is increased in frequency poleward and decreased in frequency equatorward of 42°S, corresponding to a positive SAM index.


2020 ◽  
Vol 146 (729) ◽  
pp. 1939-1959
Author(s):  
Hua Lu ◽  
Matthew H. Hitchman ◽  
Lesley J. Gray ◽  
James A. Anstey ◽  
Scott M. Osprey

2007 ◽  
Vol 64 (6) ◽  
pp. 1922-1940 ◽  
Author(s):  
Matthew H. Hitchman ◽  
Amihan S. Huesmann

Differential advection in Rossby waves can lead to potential vorticity (PV; P) contours on isentropic surfaces folding over in latitude (Py < 0) in a process called Rossby wave breaking (RWB). Exploring the properties of RWB may shed light on underlying dynamics and enable quantification of irreversible transport. A seasonal climatology of Py and RWB statistics is presented for the 320–850-K layer using NCEP reanalysis data during 1979–2005 and for the 320–2000-K layer using the Met Office (UKMO) data during 1991–2003. A primary goal is to depict the spatial extent and seasonality of RWB maxima. This analysis shows seven distinct RWB regimes: poleward and equatorward of the subtropical westerly jets, poleward and equatorward of the stratospheric polar night jets, flanking the equator in the stratosphere and mesosphere, equatorward of subtropical monsoon anticyclones, and the summertime polar stratosphere. A striking PV gradient maximum exists at the equator throughout the layer 360–2000 K, flanked by subtropical RWB maxima, integral components of the Lagrangian cross-equatorial flow. Strong RWB occurs in the polar night vortex where β is small. Over the summer pole, strong poleward RWB associated with synoptic waves decays into small amplitude motions in the upper stratosphere, where heating gradients cause Py < 0. The seven spatial regimes are linked to three different dynamical causes of reversals: wave breaking associated with westerly jets, a combined barotropic/inertial instability in cross-equatorial flow, and on the periphery of monsoon anticyclones.


2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2013 ◽  
Vol 140 (680) ◽  
pp. 738-753 ◽  
Author(s):  
Iñigo Gómara ◽  
Joaquim G. Pinto ◽  
Tim Woollings ◽  
Giacomo Masato ◽  
Pablo Zurita-Gotor ◽  
...  

2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


Sign in / Sign up

Export Citation Format

Share Document