scholarly journals A Continuum of Sudden Stratospheric Warmings

2009 ◽  
Vol 66 (2) ◽  
pp. 531-540 ◽  
Author(s):  
K. Coughlin ◽  
L. J. Gray

Abstract The k-means cluster technique is used to examine 43 yr of daily winter Northern Hemisphere (NH) polar stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40). The results show that the NH winter stratosphere exists in two natural well-separated states. In total, 10% of the analyzed days exhibit a warm disturbed state that is typical of sudden stratospheric warming events. The remaining 90% of the days are in a state typical of a colder undisturbed vortex. These states are determined objectively, with no preconceived notion of the groups. The two stratospheric states are described and compared with alternative indicators of the polar winter flow, such as the northern annular mode. It is shown that the zonally averaged zonal winds in the polar upper stratosphere at ∼7 hPa can best distinguish between the two states, using a threshold value of ∼4 m s−1, which is remarkably close to the standard WMO criterion for major warming events. The analysis also determines that there are no further divisions within the warm state, indicating that there is no well-designated threshold between major and minor warmings, nor between split and displaced vortex events. These different manifestations are simply members of a continuum of warming events.

2018 ◽  
Vol 31 (6) ◽  
pp. 2337-2344 ◽  
Author(s):  
Amy H. Butler ◽  
Edwin P. Gerber

Various criteria exist for determining the occurrence of a major sudden stratospheric warming (SSW), but the most common is based on the reversal of the climatological westerly zonal-mean zonal winds at 60° latitude and 10 hPa in the winter stratosphere. This definition was established at a time when observations of the stratosphere were sparse. Given greater access to data in the satellite era, a systematic analysis of the optimal parameters of latitude, altitude, and threshold for the wind reversal is now possible. Here, the frequency of SSWs, the strength of the wave forcing associated with the events, changes in stratospheric temperature and zonal winds, and surface impacts are examined as a function of the stratospheric wind reversal parameters. The results provide a methodical assessment of how to best define a standard metric for major SSWs. While the continuum nature of stratospheric variability makes it difficult to identify a decisively optimal threshold, there is a relatively narrow envelope of thresholds that work well—and the original focus at 60° latitude and 10 hPa lies within this window.


2021 ◽  
Author(s):  
Yaxian Li ◽  
Gang Chen

<p>We present an analysis of the perturbations and wave characteristics in equatorial electrojet (EEJ) and equatorial zonal winds in the mesosphere and lower thermosphere region during three sudden stratospheric warming (SSW) events, based on the wind observations by two meteor radars in Indonesia and the geomagnetic field observations in India. During three SSWs, the shifting semidiurnal perturbations are consistently observed in the EEJ and accompanied with strong 2-day periodic perturbations simultaneously. The semidiurnal lunar (L2) tidal amplitudes in the EEJ and zonal winds show the prominent enhancements during the episodes of EEJ perturbations. The time-period spectra of the L2 tidal amplitudes in both the EEJ and zonal winds present the obvious quasi-2-day wave (QTDW) amplification with good agreement during these periods. Our results firstly reveal the important contributions of QTDW to EEJ perturbations during SSWs and the semidiurnal lunar tides modulated by QTDW serve as the main forcing agent therein</p>


2012 ◽  
Vol 12 (3) ◽  
pp. 7243-7271 ◽  
Author(s):  
J. Kuttippurath ◽  
G. Nikulin

Abstract. The Arctic winter 2009/10 was moderately cold in December. A minor warming occurred around mid-December due to a wave 2 amplification split the lower stratospheric vortex into two lobes. The vortices merged again and formed a relatively large vortex in a few days. The temperatures began to rise by mid-January and triggered a major sudden stratospheric warming (SSW) by the reversal of westerlies in late (24–26) January, driven by a planetary wave 1 with a peak amplitude of about 100 m2 s−2 at 60° N/10 hPa. The momentum flux associated with this warming showed the largest value in the recent winters, about 450 m2 s−2 at 60° N/10 hPa. The associated vortex split confined to altitudes below 10 hPa and hence, the major warming (MW) was a vortex displacement event. Large amounts of Eliassen-Palm (EP) and wave 2 EP fluxes (3.9 ×105 kg s−2) are found shortly before the MW event at 100 hPa over 45–75° N, suggesting a tropospheric preconditioning of the MW event. We observe an increase in SSWs in the Arctic in recent years, as there were 6 MWs in 6 out of the 7 winters of 2003/04–2009/10, which confirms the conclusions of previous studies on the SSWs in winters prior to 2003/04. Each MW event was unique as far as its evolution and related polar processes were concerned. As compared to the MWs in the recent Arctic winters, the strongest MW was observed in 2008/09 and was initiated by a wave 2 event. A detailed diagnosis of ozone loss during the past fifteen years shows that the loss is inversely proportional to the intensity and timing of SSWs in each winter, where early MWs lead to minimal loss. The ozone loss shows a good correlation with the zonal mean amplitude of zonal winds in January over 60–90° N, suggesting a proxy for MWs in the Arctic winters.


2005 ◽  
Vol 18 (9) ◽  
pp. 1315-1325 ◽  
Author(s):  
Alex Hall ◽  
Amy Clement ◽  
David W. J. Thompson ◽  
Anthony Broccoli ◽  
Charles Jackson

Abstract Milankovitch proposed that variations in the earth’s orbit cause climate variability through a local thermodynamic response to changes in insolation. This hypothesis is tested by examining variability in an atmospheric general circulation model coupled to an ocean mixed layer model subjected to the orbital forcing of the past 165 000 yr. During Northern Hemisphere summer, the model’s response conforms to Milankovitch’s hypothesis, with high (low) insolation generating warm (cold) temperatures throughout the hemisphere. However, during Northern Hemisphere winter, the climate variations stemming from orbital forcing cannot be solely understood as a local thermodynamic response to radiation anomalies. Instead, orbital forcing perturbs the atmospheric circulation in a pattern bearing a striking resemblance to the northern annular mode, the primary mode of simulated and observed unforced atmospheric variability. The hypothesized reason for this similarity is that the circulation response to orbital forcing reflects the same dynamics generating unforced variability. These circulation anomalies are in turn responsible for significant fluctuations in other climate variables: Most of the simulated orbital signatures in wintertime surface air temperature over midlatitude continents are directly traceable not to local radiative forcing, but to orbital excitation of the northern annular mode. This has paleoclimate implications: during the point of the model integration corresponding to the last interglacial (Eemian) period, the orbital excitation of this mode generates a 1°–2°C warm surface air temperature anomaly over Europe, providing an explanation for the warm anomaly of comparable magnitude implied by the paleoclimate proxy record. The results imply that interpretations of the paleoclimate record must account for changes in surface temperature driven not only by changes in insolation, but also by perturbations in atmospheric dynamics.


2004 ◽  
Vol 22 (3) ◽  
pp. 725-731 ◽  
Author(s):  
D. R. Palamara ◽  
E. A. Bryant

Abstract. We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM). Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO), and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation. Key words. Meterology and atmospheric dynamics (general circulation, climatology)


Sign in / Sign up

Export Citation Format

Share Document