Error Growth in a Whole Atmosphere Climate Model

2009 ◽  
Vol 66 (1) ◽  
pp. 173-186 ◽  
Author(s):  
H-L. Liu ◽  
F. Sassi ◽  
R. R. Garcia

Abstract It has been well established that the atmosphere is chaotic by nature and thus has a finite limit of predictability. The chaotic divergence of initial conditions and the predictability are explored here in the context of the whole atmosphere (from the ground to the thermosphere) using the NCAR Whole Atmosphere Community Climate Model (WACCM). From ensemble WACCM simulations, it is found that the early growth of differences in initial conditions is associated with gravity waves and it becomes apparent first in the upper atmosphere and progresses downward. The differences later become more profound on increasingly larger scales, and the growth rates of the differences change in various atmospheric regions and with seasons—corresponding closely with the strength of planetary waves. For example, in December–February the growth rates are largest in the northern and southern mesosphere and lower thermosphere and in the northern stratosphere, while smallest in the southern stratosphere. The growth rates, on the other hand, are not sensitive to the altitude where the small differences are introduced in the initial conditions or the physical nature of the differences. Furthermore, the growth rates in the middle and upper atmosphere are significantly reduced if the lower atmosphere is regularly reinitialized, and the reduction depends on the frequency and the altitude range of the reinitialization.

2020 ◽  
Vol 20 (12) ◽  
pp. 7617-7644
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

Abstract. Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; x–z and t) and two-dimensional (2D; z and t) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wave number 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.


2021 ◽  
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

<p>Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; <span><em>x</em></span>–<span><em>z</em></span> and <span><em>t</em></span>) and two-dimensional (2D; <span><em>z</em></span> and <span><em>t</em></span>) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wavenumber 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.</p>


2020 ◽  
Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>It is now well accepted that the ionosphere and thermosphere are sensitive to forcing from the lower atmosphere (troposphere-stratosphere) owing mainly to the progress that have been made in the last decade in understanding the vertical coupling mechanisms connecting these two distinct atmospheric regions. In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability due to sudden stratospheric warming (SSW) events have been particularly important. The change of stratospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to the SSWs events have been gained by studying the 2008/2009 SSW event, which occurred under extremely low solar flux conditions. Recently another SSW event in 2018/2019 occurred under similar low solar flux conditions. In this study we simulate both these SSW events using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and present the findings by comparing the ionospheric and thermospheric response to both these SSW events. The tidal characteristics of the semidiurnal solar and lunar tides and the thermospheric composition for both these SSW events are compared and the causes of varying responses are investigated.</p>


2021 ◽  
Author(s):  
Maria Vittoria Guarino ◽  
Wuhu Feng ◽  
Chester Gardner ◽  
Daniel Marsh ◽  
John Plane

<div> <p>Atmospheric gravity waves generated in the troposphere by a number of sources (convection, frontogenesis, orography etc.) can travel great vertical distances, propagating upwards to 80 - 120km where they influence the chemical and dynamical structure of the Mesosphere and Lower Thermosphere (MLT).</p> </div><div> <p>Current chemistry-climate models represent gravity waves, and their impact on the temperature and the chemical composition of the atmosphere, by means of parameterizations that take into account the turbulence and the mixing caused by breaking waves but largely neglect the dynamical and chemical constituent transport by vertically propagating non-breaking waves.</p> </div><div> <p>We present initial results from the WAVECHASM (Wave-Induced Transport of Chemically Active Species in the Mesosphere and Lower Thermosphere) project. By making use of a recent novel theoretical approach, where the effective wave diffusivity is expressed as a function of the eddy diffusivity and of the variances of the temperature perturbation and lapse rate fluctuations, the WAVECHASM project aims to incorporate the missing transport processes into global atmospheric chemistry models. We will show here that it is possible to modify the current gravity wave drag parameterization of NCAR’s Whole Atmosphere Community Climate Model (WACCM) to explicitly account for the wave-driven vertical mixing associated with non-breaking gravity waves. This additional source of vertical mixing is expected to induce significant constituent transport in the upper atmosphere.</p> </div>


1999 ◽  
Vol 24 (11) ◽  
pp. 1571-1576 ◽  
Author(s):  
P.J.S. Williams ◽  
N.J. Mitchell ◽  
A.G. Beard ◽  
V.St.C. Howells ◽  
H.G. Muller

2018 ◽  
Vol 75 (10) ◽  
pp. 3635-3651 ◽  
Author(s):  
Ryosuke Yasui ◽  
Kaoru Sato ◽  
Yasunobu Miyoshi

The contributions of gravity waves to the momentum budget in the mesosphere and lower thermosphere (MLT) is examined using simulation data from the Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA) whole-atmosphere model. Regardless of the relatively coarse model resolution, gravity waves appear in the MLT region. The resolved gravity waves largely contribute to the MLT momentum budget. A pair of positive and negative Eliassen–Palm flux divergences of the resolved gravity waves are observed in the summer MLT region, suggesting that the resolved gravity waves are likely in situ generated in the MLT region. In the summer MLT region, the mean zonal winds have a strong vertical shear that is likely formed by parameterized gravity wave forcing. The Richardson number sometimes becomes less than a quarter in the strong-shear region, suggesting that the resolved gravity waves are generated by shear instability. In addition, shear instability occurs in the low (middle) latitudes of the summer (winter) MLT region and is associated with diurnal (semidiurnal) migrating tides. Resolved gravity waves are also radiated from these regions. In Part I of this paper, it was shown that Rossby waves in the MLT region are also radiated by the barotropic and/or baroclinic instability formed by parameterized gravity wave forcing. These results strongly suggest that the forcing by gravity waves originating from the lower atmosphere causes the barotropic/baroclinic and shear instabilities in the mesosphere that, respectively, generate Rossby and gravity waves and suggest that the in situ generation and dissipation of these waves play important roles in the momentum budget of the MLT region.


2006 ◽  
Vol 24 (4) ◽  
pp. 1175-1188 ◽  
Author(s):  
E. Becker ◽  
D. C. Fritts

Abstract. We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.


2019 ◽  
Vol 37 (5) ◽  
pp. 851-875 ◽  
Author(s):  
Sven Wilhelm ◽  
Gunter Stober ◽  
Peter Brown

Abstract. We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3∘ N, 16∘ E) and the mid-latitude locations of Juliusruh (54.6∘ N, 13.4∘ E) and Tavistock (43.3∘ N, 80.8∘ W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3 m s−1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90 km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82 km during summer and from November to December between 84 and 95 km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November.


Sign in / Sign up

Export Citation Format

Share Document