scholarly journals Subseasonal Variability Associated with Asian Summer Monsoon Simulated by 14 IPCC AR4 Coupled GCMs

2008 ◽  
Vol 21 (18) ◽  
pp. 4541-4567 ◽  
Author(s):  
Jia-Lin Lin ◽  
Klaus M. Weickman ◽  
George N. Kiladis ◽  
Brian E. Mapes ◽  
Siegfried D. Schubert ◽  
...  

Abstract This study evaluates the subseasonal variability associated with the Asian summer monsoon in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. The authors focus on the three major components of Asian summer monsoon: the Indian summer monsoon (ISM), the western North Pacific summer monsoon (WNPSM), and the East Asian summer monsoon (EASM), together with the two dominant subseasonal modes: the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSIO) and the westward-propagating 12–24-day mode. The results show that current state-of-the-art GCMs still have difficulties and display a wide range of skill in simulating the subseasonal variability associated with Asian summer monsoon. During boreal summer (May–October), most of the models produce reasonable seasonal-mean precipitation over the ISM region, but excessive precipitation over the WNPSM region and insufficient precipitation over the EASM region. In other words, models concentrate their rain too close to the equator in the western Pacific. Most of the models simulate overly weak total subseasonal (2–128 day) variance, as well as too little variance for BSIO and the 12–24-day mode. Only 4–5 models produce spectral peaks in the BSIO and 12–24-day frequency bands; instead, most of the models display too red a spectrum, that is, an overly strong persistence of precipitation. For the seven models with three-dimensional data available, five reproduce the preconditioning of moisture in BSIO but often with a too late starting time, and only three simulate the phase lead of low-level convergence. Interestingly, although models often have difficulty in simulating the eastward propagation of BSIO, they tend to simulate well the northward propagation of BSIO, together with the westward propagation of the 12–24-day mode. The northward propagation in these models is thus not simply a NW–SE-tilted tail protruding off of an eastward-moving deep-tropical intraseasonal oscillation.

2013 ◽  
Vol 26 (12) ◽  
pp. 4186-4203 ◽  
Author(s):  
Xiouhua Fu ◽  
June-Yi Lee ◽  
Bin Wang ◽  
Wanqiu Wang ◽  
Frederic Vitart

Abstract The boreal summer intraseasonal oscillation (BSISO) is a dominant tropical mode with a period of 30–60 days, which offers an opportunity for intraseasonal forecasting of the Asian summer monsoon. The present study provides a preliminary, yet up-to-date, assessment of the prediction skill of the BSISO in four state-of-the-art models: the ECMWF model, the University of Hawaii (UH) model, the NCEP Climate Forecast System, version 2 (CFSv2), and version 1 for the 2008 summer (CFSv1), which is a common year of two international programs: the Year of Tropical Convection (YOTC) and Asian Monsoon Years (AMY). The mean prediction skill over the global tropics and Southeast Asia for first three models reaches about 1–2 (3) weeks for BSISO-related rainfall (850-hPa zonal wind), measured as the lead time when the spatial anomaly correlation coefficient drops to 0.5. The skill of CFSv1 is consistently lower than the other three. The strengths and weaknesses of the CFSv2, UH, and ECMWF models in forecasting the BSISO for this specific year are further revealed. The ECMWF and UH have relatively better performance for northward-propagating BSISO when the initial convection is near the equator, although they suffer from an early false BSISO onset when initial convection is in the off-equatorial monsoon trough. However, CFSv2 does not have a false onset problem when the initial convection is in monsoon trough, but it does have a problem with very slow northward propagation. After combining the forecasts of CFSv2 and UH into an equal-weighted multimodel ensemble, the resultant skill is slightly better than that of individual models. An empirical model shows a comparable skill with the dynamical models. A combined dynamical–empirical ensemble advances the intraseasonal forecast skill of BSISO-related rainfall to three weeks.


2012 ◽  
Vol 40 (1-2) ◽  
pp. 493-509 ◽  
Author(s):  
June-Yi Lee ◽  
Bin Wang ◽  
Matthew C. Wheeler ◽  
Xiouhua Fu ◽  
Duane E. Waliser ◽  
...  

2017 ◽  
Vol 30 (9) ◽  
pp. 3343-3365 ◽  
Author(s):  
Wenwen Kong ◽  
Leif M. Swenson ◽  
John C. H. Chiang

The Holocene East Asian summer monsoon (EASM) was previously characterized as a trend toward weaker monsoon intensity paced by orbital insolation. It is demonstrated here that this evolution is more accurately characterized as changes in the transition timing and duration of the EASM seasonal stages (spring, pre-mei-yu, mei-yu, midsummer), and tied to the north–south displacement of the westerlies relative to Tibet. To this end, time-slice simulations across the Holocene are employed using an atmospheric general circulation model. Self-organizing maps are used to objectively identify the transition timing and duration of the EASM seasonal stages. Compared to the late Holocene, an earlier onset of mei-yu and an earlier transition from mei-yu to midsummer in the early to mid-Holocene are found, resulting in a shortened mei-yu and prolonged midsummer stage. These changes are accompanied by an earlier northward positioning of the westerlies relative to Tibet. Invoking changes to seasonal transitions also provides a more satisfactory explanation for two key observations of Holocene East Asian climate: the “asynchronous Holocene optimum” and changes to dust emissions. A mechanism is proposed to explain the altered EASM seasonality in the simulated early to mid-Holocene. The insolation increase over the boreal summer reduces the pole–equator temperature gradient, leading to northward-shifted and weakened westerlies. The meridional position of the westerlies relative to the Tibetan Plateau determines the onset of mei-yu and possibly the onset of the midsummer stage. The northward shift in the westerlies triggers earlier seasonal rainfall transitions and, in particular, a shorter mei-yu and longer midsummer stage.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuhei Takaya ◽  
Yu Kosaka ◽  
Masahiro Watanabe ◽  
Shuhei Maeda

AbstractThe interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980–2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere–ocean response in the Indian Ocean–western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.


2016 ◽  
Vol 29 (13) ◽  
pp. 5027-5040 ◽  
Author(s):  
Jie Cao ◽  
Shu Gui ◽  
Qin Su ◽  
Yali Yang

Abstract The interannual zonal movement of the interface between the Indian summer monsoon and the East Asian summer monsoon (IIE), associated with the spring sea surface temperature (SST) seesaw mode (SSTSM) over the tropical Indian Ocean (TIO) and the tropical central-western Pacific (TCWP), is studied for the period 1979–2008. The observational analysis is based on Twentieth Century Reanalysis data (version 2) of atmospheric circulations, Extended Reconstructed SST data (version 3), and the Climate Prediction Center Merged Analysis of Precipitation. The results indicate that the IIE’s zonal movement is significantly and persistently correlated with the TIO–TCWP SSTSM, from spring to summer. The results of two case studies resemble those obtained by regression analysis. Experiments using an atmospheric general circulation model (ECHAM6) substantiate the key physical processes revealed in the observational analysis. When warmer (colder) SSTs appear in the TIO and colder (warmer) SSTs occur in the TCWP, the positive (negative) SSTSM forces anomalous easterly (westerly) winds over the Bay of Bengal (BOB), South China Sea (SCS), and western North Pacific (WNP). The anomalous easterly (westerly) winds further result in a weakened (strengthened) southwest summer monsoon over the BOB and a strengthened (weakened) southeast summer monsoon over the SCS and WNP. This causes the IIE to shift farther eastward (westward) than normal.


2005 ◽  
Vol 18 (2) ◽  
pp. 287-301 ◽  
Author(s):  
C-P. Chang ◽  
Zhuo Wang ◽  
John McBride ◽  
Ching-Hwang Liu

Abstract In general, the Bay of Bengal, Indochina Peninsula, and Philippines are in the Asian summer monsoon regime while the Maritime Continent experiences a wet monsoon during boreal winter and a dry season during boreal summer. However, the complex distribution of land, sea, and terrain results in significant local variations of the annual cycle. This work uses historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations. The annual cycle is dominated largely by interactions between the complex terrain and a simple annual reversal of the surface monsoonal winds throughout all monsoon regions from the Indian Ocean to the South China Sea and the equatorial western Pacific. The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small region reflects the twice-yearly crossing of the sun. Most of the semiannual cycle appears to be due to the influence of both the summer and the winter monsoon in the western part of the Maritime Continent where the annual cycle maximum occurs in fall. Analysis of the TRMM data reveals a structure whereby the boreal summer and winter monsoon rainfall regimes intertwine across the equator and both are strongly affected by the wind–terrain interaction. In particular, the boreal winter regime extends far northward along the eastern flanks of the major island groups and landmasses. A hypothesis is presented to explain the asymmetric seasonal march in which the maximum convection follows a gradual southeastward progression path from the Asian summer monsoon to the Asian winter monsoon but experiences a sudden transition in the reverse. The hypothesis is based on the redistribution of mass between land and ocean areas during spring and fall that results from different land–ocean thermal memories. This mass redistribution between the two transition seasons produces sea level patterns leading to asymmetric wind–terrain interactions throughout the region, and a low-level divergence asymmetry in the region that promotes the southward march of maximum convection during boreal fall but opposes the northward march during boreal spring.


Sign in / Sign up

Export Citation Format

Share Document