scholarly journals Spatial Coherence of Monsoon Onset over Western and Central Sahel (1950–2000)

2009 ◽  
Vol 22 (5) ◽  
pp. 1313-1324 ◽  
Author(s):  
Romain Marteau ◽  
Vincent Moron ◽  
Nathalie Philippon

Abstract The spatial coherence of boreal monsoon onset over the western and central Sahel (Senegal, Mali, Burkina Faso) is studied through the analysis of daily rainfall data for 103 stations from 1950 to 2000. Onset date is defined using a local agronomic definition, that is, the first wet day (>1 mm) of 1 or 2 consecutive days receiving at least 20 mm without a 7-day dry spell receiving less than 5 mm in the following 20 days. Changing either the length or the amplitude of the initial wet spell, or both, or the length of the following dry spell modifies the long-term mean of local-scale onset date but has only a weak impact either on its interannual variability or its spatial coherence. Onset date exhibits a seasonal progression from southern Burkina Faso (mid-May) to northwestern Senegal and Saharian edges (early August). Interannual variability of the local-scale onset date does not seem to be strongly spatially coherent. The amount of common or covariant signal across the stations is far weaker than the interstation noise at the interannual time scale. In particular, a systematic spatially consistent advance or delay of the onset is hardly observed across the whole western and central Sahel. In consequence, the seasonal predictability of local-scale onset over the western and central Sahel associated, for example, with large-scale sea surface temperatures, is, at best, weak.

2009 ◽  
Vol 22 (3) ◽  
pp. 840-850 ◽  
Author(s):  
Vincent Moron ◽  
Andrew W. Robertson ◽  
Rizaldi Boer

Abstract The seasonal potential predictability of monsoon onset during the August–December season over Indonesia is studied through analysis of the spatial coherence of daily station rainfall and gridded pentad precipitation data from 1979 to 2005. The onset date, defined using a local agronomic definition, exhibits a seasonal northwest-to-southeast progression from northern and central Sumatra (late August) to Timor (mid-December). South of the equator, interannual variability of the onset date is shown to consist of a spatially coherent large-scale component, together with local-scale noise. The high spatial coherence of onset is similar to that of the September–December seasonal total, while postonset amounts averaged over 15–90 days and September–December amount residuals from large-scale onset show much less spatial coherence, especially across the main islands of monsoonal Indonesia. The cumulative rainfall anomalies exhibit also their largest amplitudes before or near the onset date. This implies that seasonal potential predictability over monsoonal Indonesia during the first part of the austral summer monsoon season is largely associated with monsoon onset, and that there is much less predictability within the rainy season itself. A cross-validated canonical correlation analysis using July sea surface temperatures over the tropical Pacific and Indian Oceans (20°S–20°N, 80°–280°E) as predictors of local-scale onset dates exhibits promising hindcast skill (anomaly correlation of ∼0.80 for the spatial average of standardized rain gauges and ∼0.70 for standardized gridded pentad precipitation data).


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


2016 ◽  
Author(s):  
Yuxuan Wang ◽  
Beixi Jia ◽  
Sing-Chun Wang ◽  
Mark Estes ◽  
Lu Shen ◽  
...  

Abstract. The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes of monthly-mean maximum daily 8-hour average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon), and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p < 0.05) of the interannual (1990–2015) variability of the HGB-mean ozone throughout JJA, while local-scale meridional wind speed is selected as an additional predictor for August only. Local-scale temperature and zonal wind speed are not identified as important factors for any summer month. The best-fit MLR model can explain 61 %–72 % of the interannual variability of the HGB-mean summertime ozone over 1990–2015 and shows good performance in cross-validation (R2 higher than 0.48). The BH-Lon is the most important factor, which alone explains 38 %–48 % of such variability. The location and strength of the Bermuda High appears to control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g. New Orleans, LA; Mobile, AL; and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.


2020 ◽  
Author(s):  
Shlomi Ziskin Ziv ◽  
Chaim I. Garfinkel

&lt;p&gt;Understanding the sinks, sources and transport processes of stratospheric trace gases can improve our prediction of mid to long term climate change. In this study we consider the processes that lead to variability in stratospheric water vapor. We perform a Multiple Linear Regression(MLR) on the SWOOSH combined anomaly filled water vapor product with ENSO, QBO, BDC, mid-tropospheric temperature, and CH4 as predictors, in an attempt to find the factors that most succinctly explain observed water vapor variability. We also consider the fraction of entry water vapor variability that can be accounted for by variations of the cold point temperature as an upper bound on how much water vapor variability is predictable from large scale processes. Several periods in which the MLR fails to account for interannual variability are treated as case studies in order to better understand variability in entry water not governed by these large scale processes.&lt;/p&gt;


2012 ◽  
Vol 140 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Michael J. Pook ◽  
James S. Risbey ◽  
Peter C. McIntosh

Abstract Synoptic weather systems form an important part of the physical link between remote large-scale climate drivers and regional rainfall. A synoptic climatology of daily rainfall events is developed for the Central Wheatbelt of southwestern Australia over the April–October growing season for the years 1965–2009. The climatology reveals that frontal systems contribute approximately one-half of the rainfall in the growing season while cutoff lows contribute about a third. The ratio of frontal rainfall to cutoff rainfall varies throughout the growing season. Cutoff lows contribute over 40% of rainfall in the austral autumn and spring, but this falls to about 20% in August when frontal rainfall climbs to more than 60%. The number of cutoff lows varies markedly from one growing season to another, but does not exhibit a significant long-term trend. The mean rainfall per cutoff system is also highly variable, but has gradually declined over the analysis period, particularly in the past decade. The decline in rainfall per frontal system is less significant. Cutoff low rainfall has contributed more strongly in percentage terms to the recent decline in rainfall in the Central Wheatbelt than the frontal component and accounts for more than half of the overall trend. Atmospheric blocking is highly correlated with rainfall in the region where cutoff low rainfall makes its highest proportional contribution. Hence, the decline in rain from cutoff low systems is likely to have been associated with changes in blocking and the factors controlling blocking in the region.


2009 ◽  
Vol 22 (24) ◽  
pp. 6773-6787 ◽  
Author(s):  
Hélène Brogniez ◽  
Rémy Roca ◽  
Laurence Picon

Abstract Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.


2006 ◽  
Vol 134 (11) ◽  
pp. 3248-3262 ◽  
Author(s):  
Vincent Moron ◽  
Andrew W. Robertson ◽  
M. Neil Ward

Abstract This study examines space–time characteristics of seasonal rainfall predictability in a tropical region by analyzing observed data and model simulations over Senegal. Predictability is analyzed in terms of the spatial coherence of observed interannual variability at the station scale, and within-ensemble coherence of general circulation model (GCM) simulations with observed sea surface temperatures (SSTs) prescribed. Seasonal mean rainfall anomalies are decomposed in terms of daily rainfall frequency and daily mean intensity. The observed spatial coherence is computed from a 13-station network of daily rainfall during the July–September season 1961–98 in terms of (i) interannual variability of a standardized anomaly index (i.e., the average of the normalized anomalies of each station), (ii) the external variance (i.e., the fraction of common variance among stations), and (iii) the number of spatiotemporal degrees of freedom. Spatial coherence of interannual anomalies across stations is found to be much stronger for seasonal rainfall amount and daily occurrence frequency, compared with daily mean intensity of rainfall. Combinatorial analysis of the station observations suggests that, for occurrence and seasonal amount, the empirical number of spatial degrees of freedom is largely insensitive to the number of stations considered, and is between 3 and 4 for Senegal. For daily mean intensity, by contrast, each station is found to convey almost independent information, and the number of degrees of freedom would be expected to increase for a denser network of stations. The GCM estimates of potential predictability and skill associated with the SST forcing are found to be remarkably consistent with those inferred from the observed spatial coherence: there is a moderate-to-strong skill at reproducing the interannual variations of seasonal amounts and rainfall occurrence, whereas the skill is weak for the mean intensity of rainfall. Over Senegal during July–September, it is concluded that (i) regional-scale seasonal amount and rainfall occurrence frequency are predictable from SSTs, (ii) daily mean intensity of rainfall is spatially incoherent and largely unpredictable at the regional scale, and (iii) point-score estimates of seasonal rainfall predictability and skill are subject to large sampling variability.


2015 ◽  
Vol 15 (5) ◽  
pp. 2341-2365 ◽  
Author(s):  
P. Hess ◽  
D. Kinnison ◽  
Q. Tang

Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4–NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30–90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño–Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.


Sign in / Sign up

Export Citation Format

Share Document