Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast

2009 ◽  
Vol 22 (10) ◽  
pp. 2624-2638 ◽  
Author(s):  
Wuyin Lin ◽  
Minghua Zhang ◽  
Norman G. Loeb

Abstract Marine boundary layer (MBL) clouds can significantly regulate the sensitivity of climate models, yet they are currently poorly simulated. This study aims to characterize the seasonal variations of physical properties of these clouds and their associated processes by using multisatellite data. Measurements from several independent satellite datasets [International Satellite Cloud Climatology Project (ISCCP), Clouds and the Earth’s Radiant Energy System–Moderate Resolution Imaging Spectroradiometer (CERES–MODIS), Geoscience Laser Altimeter System (GLAS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)], in conjunction with balloon soundings from the mobile facility of the Atmospheric Radiation Measurement (ARM) program at Point Reyes and reanalysis products, are used to characterize the seasonal variations of MBL cloud-top and cloud-base heights, cloud thickness, the degree of decoupling between clouds and MBL, and inversion strength off the California coast. The main results from this study are as follows: (i) MBL clouds over the northeast subtropical Pacific in the summer are more prevalent and associated with a larger in-cloud water path than in winter. The cloud-top and cloud-base heights are lower in the summer than in the winter. (ii) Although the lower-tropospheric stability of the atmosphere is higher in the summer, the MBL inversion strength is only weakly stronger in the summer because of a negative feedback from the cloud-top altitude. Summertime MBL clouds are more homogeneous and are associated with lower surface latent heat flux than those in the winter. (iii) Seasonal variations of low-cloud properties from summer to winter resemble the downstream stratocumulus-to-cumulus transition of MBL clouds in terms of MBL depth, cloud-top and cloud-base heights, inversion strength, and spatial homogeneity. The “deepening–warming” mechanism of Bretherton and Wyant for the stratocumulus-to-trade-cumulus transition downstream of the cold eastern ocean can also explain the seasonal variation of low clouds from the summer to the winter, except that warming of the sea surface temperature needs to be taken as relative to the free-tropospheric air temperature, which occurs in the winter. The observed variation of low clouds from summer to winter is attributed to the much larger seasonal cooling of the free-tropospheric air temperature than that of the sea surface temperature.

2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2012 ◽  
Vol 46 (19) ◽  
pp. 10385-10389 ◽  
Author(s):  
D. J. Donaldson ◽  
Christian George

2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Ilya Serikov ◽  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Geet George ◽  
...  

&lt;p&gt;Cloud free skies are rare in the trades. &amp;#160;We analyze conditions in which cloud-free conditions prevail. &amp;#160;For this purpose Raman water vapor measurements from the Barbados Cloud Observatory, complemented by ship-based measurements during EUREC4A are used to explore water vapor variability in the marine boundary layer. &amp;#160; We explore the consistency of the inferred cloud base height with estimates of temperature and water vapor from the lidar signal, and examine the co-variability of these quantities. &amp;#160;After having established the properties of these measurements, we seek to use them as well as others, to explain in what ways periods of cloud-free conditions are maintained, investigating the hypothesis that only when the wind stills is it simply sunny.&lt;/p&gt;


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Salter SH ◽  

Elevated sea-surface temperatures are a necessary but not sufficient requirement for the formation of hurricanes and typhoons. This paper suggests a way to exploit this. Twomey [1] showed that cloud reflectivity depends on the size-distribution of cloud drops, with a large number of small drops reflecting more than a smaller number of larger ones. Mid-ocean air is cleaner than over land. Latham [2-4] suggested that reflectivity of marine stratocumulus clouds could be increased by releasing a submicron spray of filtered sea water into the bottom of the marine boundary layer. The salt residues left after evaporation would be mixed by turbulence through the full depth of the marine boundary layer and would be ideal cloud condensation nuclei. Those that reached a height where the air had a super-saturation above 100% by enough to get over the peak of the Köhler curve would produce an increased number of cloud drops and so trigger the Twomey effect. The increase in reflection from cloud tops back out to space would cool sea-surface water. We are not trying to increase cloud cover; we just want to make existing cloud tops whiter. The spray could be produced by wind-driven vessels cruising chosen ocean regions. The engineering design of sea-going hardware is well advanced. This paper suggests a way to calculate spray quantities and the number and cost of spray vessels to achieve a hurricane reduction to a more acceptable intensity. It is intended to show the shape of a possible calculation with credible if not exact assumptions. Anyone with better assumptions should be able to follow the process.


2004 ◽  
Vol 61 (24) ◽  
pp. 3049-3064 ◽  
Author(s):  
Isaac Ginis ◽  
Alexander P. Khain ◽  
Elena Morozovsky

Abstract A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity. The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.


2018 ◽  
Vol 18 (23) ◽  
pp. 17615-17635 ◽  
Author(s):  
Guangjie Zheng ◽  
Yang Wang ◽  
Allison C. Aiken ◽  
Francesca Gallo ◽  
Michael P. Jensen ◽  
...  

Abstract. The response of marine low cloud systems to changes in aerosol concentration represents one of the largest uncertainties in climate simulations. Major contributions to this uncertainty are derived from poor understanding of aerosol under natural conditions and the perturbation by anthropogenic emissions. The eastern North Atlantic (ENA) is a region of persistent but diverse marine boundary layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In this study, we examine MBL aerosol properties, trace gas mixing ratios, and meteorological parameters measured at the Atmospheric Radiation Measurement Climate Research Facility's ENA site on Graciosa Island, Azores, Portugal, during a 3-year period from 2015 to 2017. Measurements impacted by local pollution on Graciosa Island and during occasional intense biomass burning and dust events are excluded from this study. Submicron aerosol size distribution typically consists of three modes: Aitken (At, diameter Dp<∼100 nm), accumulation (Ac, Dp within ∼100 to ∼300 nm), and larger accumulation (LA, Dp>∼300 nm) modes, with average number concentrations (denoted as NAt, NAc, and NLA below) of 330, 114, and 14 cm−3, respectively. NAt, NAc, and NLA show contrasting seasonal variations, suggesting different sources and removal processes. NLA is dominated by sea spray aerosol (SSA) and is higher in winter and lower in summer. This is due to the seasonal variations of SSA production, in-cloud coalescence scavenging, and dilution by entrained free troposphere (FT) air. In comparison, SSA typically contributes a relatively minor fraction to NAt (10 %) and NAc (21 %) on an annual basis. In addition to SSA, sources of Ac-mode particles include entrainment of FT aerosols and condensation growth of Aitken-mode particles inside the MBL, while in-cloud coalescence scavenging is the major sink of NAc. The observed seasonal variation of NAc, being higher in summer and lower in winter, generally agrees with the steady-state concentration estimated from major sources and sinks. NAt is mainly controlled by entrainment of FT aerosol, coagulation loss, and growth of Aitken-mode particles into the Ac-mode size range. Our calculation suggests that besides the direct contribution from entrained FT Ac-mode particles, growth of entrained FT Aitken-mode particles in the MBL also represent a substantial source of cloud condensation nuclei (CCN), with the highest contribution potentially reaching 60 % during summer. The growth of Aitken-mode particles to CCN size is an expected result of the condensation of sulfuric acid, a product from dimethyl sulfide oxidation, suggesting that ocean ecosystems may have a substantial influence on MBL CCN populations in the ENA.


Sign in / Sign up

Export Citation Format

Share Document