scholarly journals Effects of Large Eddies on the Structure of the Marine Boundary Layer under Strong Wind Conditions

2004 ◽  
Vol 61 (24) ◽  
pp. 3049-3064 ◽  
Author(s):  
Isaac Ginis ◽  
Alexander P. Khain ◽  
Elena Morozovsky

Abstract A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity. The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.

2020 ◽  
Author(s):  
Swaleha Inamdar ◽  
Liselotte Tinel ◽  
Rosie Chance ◽  
Lucy Jane Carpenter ◽  
Sabu Prabhakaran ◽  
...  

<p>Iodine chemistry plays an essential role in controlling the radiation budget by changing various atmospheric parameters. Iodine in the atmosphere is known to cause depletion of ozone via catalytic reaction cycles. It alters the atmospheric oxidation capacity, and lead to ultrafine particle formation that acts as potential cloud condensation nuclei. The ocean is the primary source of iodine; it enters the atmosphere through fluxes of gaseous reactive iodine species. At the ocean surface, seawater iodide reacts with tropospheric ozone (gas) to form inorganic iodine species in gaseous form. These species namely, hypoiodous acid (HOI) and molecular iodine (I<sub>2</sub>) quickly photolyse to release reactive iodine (I) in the atmosphere. This process acts as a significant sink for tropospheric ozone contributing to ~16% ozone loss throughout the troposphere. Reactive iodine released in the atmosphere undergoes the formation of iodine monoxide (IO) or higher oxides of iodine (I<sub>x</sub>O<sub>x</sub>) via self-recombination reactions. It is known that inorganic iodine fluxes (HOI and I<sub>2</sub>) contribute to 75% of the detected IO over the Atlantic Ocean. However, we did not observe this from ship-based MAX-DOAS studies between 2014-2017. At present, there are no direct observations of inorganic iodine (HOI; few for I<sub>2</sub>) and are estimated via empirical methods derived from the interfacial kinetic model by Carpenter et al. in 2013. Based on the kinetic model, estimation of HOI and I<sub>2</sub> fluxes depends on three parameters, namely, ozone concentration, surface iodide concentration, and the wind speed. This parameterisation for inorganic fluxes assumes a sea surface temperature (SST) of 293 K and has limiting wind speed conditions. Since the parameterisation conditions assumed SST of 293 K higher uncertainties due to errors in activation energy creeps in the estimation of HOI flux compared to I<sub>2</sub> as the flux of HOI is ~20 times greater than that of I<sub>2</sub>. For three consecutive expeditions in the Indian and Southern Ocean, we detected ~1 pptv of IO in the marine boundary layer. These levels are not explained by the calculated inorganic fluxes by using observed and predicted sea surface iodide concentrations. This method of iodine flux estimation is currently used in all global models, along with the MacDonald et al. 2014 iodide estimation method. Model output using these parameterisations have not been able to match the observed IO levels in the Indian and Southern Ocean region. This discrepancy suggests that the process of efflux of iodine to the atmosphere may not be fully understood, and the current parametrisation does not do justice to the observations. It also highlights that the flux of organic iodine may also play a role in observed IO levels, especially in the Indian Ocean region. A correlation of 0.7 was achieved above the 99% confidence limit for chlorophyll-a with observed IO concentration in this region. There is a need to carry more observations to improve the estimation technique of iodine sea-air flux thus improving model predictions of IO in the atmosphere.</p>


2011 ◽  
Vol 68 (10) ◽  
pp. 2366-2384 ◽  
Author(s):  
J. Shpund ◽  
M. Pinsky ◽  
A. Khain

Abstract The effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m × 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s−1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%–100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.


2021 ◽  
Author(s):  
Iris Thurnherr ◽  
Heini Wernli ◽  
Franziska Aemisegger

<p>Stable water isotopes in marine boundary layer water vapour are strongly influenced by the strength of air-sea moisture fluxes and are thus tracers of air-sea interaction. Air-sea moisture fluxes in the extratropics are modulated by large-scale air advection, for instance the advection of warm and moist air masses in the warm sector of extratropical cyclones. A distinct isotopic composition of water vapour in the latter environment has been observed in near-surface water vapour over the Southern Ocean during the 2016/17 Antarctic Circumnavigation coordinated by the Swiss Polar Institute. Most prominently, the second-order isotope variable d-excess shows negative values in the cyclones’ warm sector. Here, we present three single-process air parcel models, which simulate the evolution of d-excess and specific humidity in an air parcel induced by dew deposition, decreasing ocean evaporation or upstream cloud formation, respectively. The air-parcel models are combined with simulations with the isotope-enabled numerical weather prediction model COSMO<sub>iso</sub> (i) to validate the air parcel models, (ii) to study the extent of non-linear interactions between the different processes, and (iii) to quantify the relevance of the three processes for stable water isotopes in the warm sector of the investigated extratropical cyclone. This analysis reveals that dew deposition and decreasing ocean evaporation lead to the strongest d-excess decrease in near-surface water vapour in the warm sector. Furthermore, COSMO<sub>iso</sub> air parcel trajectories show that the persistent low d-excess observed in the warm sector of extratropical cyclones is not a result of material conservation of low d-excess. Instead the latter feature is sustained by the continuous production of low d-excess values in new air parcels entering the warm sector. We show that with the mechanistic approach of using single-process air parcel models we are able to simulate the evolution of d-excess during the air parcel’s transport. This improves our understanding of the effect of air-sea interaction and boundary layer cloud formation on the stable water isotope variability of marine boundary layer water vapour.</p>


2014 ◽  
Vol 142 (11) ◽  
pp. 4284-4307 ◽  
Author(s):  
Natalie Perlin ◽  
Simon P. de Szoeke ◽  
Dudley B. Chelton ◽  
Roger M. Samelson ◽  
Eric D. Skyllingstad ◽  
...  

Abstract The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.


2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


2012 ◽  
Vol 46 (19) ◽  
pp. 10385-10389 ◽  
Author(s):  
D. J. Donaldson ◽  
Christian George

Author(s):  
Youtong Zheng ◽  
Haipeng Zhang ◽  
Daniel Rosenfeld ◽  
Seoung-Soo Lee ◽  
Tianning Su ◽  
...  

AbstractWe explore the decoupling physics of a stratocumulus-topped boundary layer (STBL) moving over cooler water, a situation mimicking the warm air advection (WADV). We simulate an initially well-mixed STBL over a doubly periodic domain with the sea surface temperature decreasing linearly over time using the System for Atmospheric Modeling large-eddy model. Due to the surface cooling, the STBL becomes increasingly stably stratified, manifested as a near-surface temperature inversion topped by a well-mixed cloud-containing layer. Unlike the stably stratified STBL in cold air advection (CADV) that is characterized by cumulus coupling, the stratocumulus deck in the WADV is unambiguously decoupled from the sea surface, manifested as weakly negative buoyancy flux throughout the sub-cloud layer. Without the influxes of buoyancy from the surface, the convective circulation in the well-mixed cloud-containing layer is driven by cloud-top radiative cooling. In such a regime, the downdrafts propel the circulation, in contrast to that in CADV regime for which the cumulus updrafts play a more determinant role. Such a contrast in convection regime explains the difference in many aspects of the STBLs including the entrainment rate, cloud homogeneity, vertical exchanges of heat and moisture, and lifetime of the stratocumulus deck, with the last being subject to a more thorough investigation in part 2. Finally, we investigate under what conditions a secondary stratus near the surface (or fog) can form in the WADV. We found that weaker subsidence favors the formation of fog whereas a more rapid surface cooling rate doesn’t.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Salter SH ◽  

Elevated sea-surface temperatures are a necessary but not sufficient requirement for the formation of hurricanes and typhoons. This paper suggests a way to exploit this. Twomey [1] showed that cloud reflectivity depends on the size-distribution of cloud drops, with a large number of small drops reflecting more than a smaller number of larger ones. Mid-ocean air is cleaner than over land. Latham [2-4] suggested that reflectivity of marine stratocumulus clouds could be increased by releasing a submicron spray of filtered sea water into the bottom of the marine boundary layer. The salt residues left after evaporation would be mixed by turbulence through the full depth of the marine boundary layer and would be ideal cloud condensation nuclei. Those that reached a height where the air had a super-saturation above 100% by enough to get over the peak of the Köhler curve would produce an increased number of cloud drops and so trigger the Twomey effect. The increase in reflection from cloud tops back out to space would cool sea-surface water. We are not trying to increase cloud cover; we just want to make existing cloud tops whiter. The spray could be produced by wind-driven vessels cruising chosen ocean regions. The engineering design of sea-going hardware is well advanced. This paper suggests a way to calculate spray quantities and the number and cost of spray vessels to achieve a hurricane reduction to a more acceptable intensity. It is intended to show the shape of a possible calculation with credible if not exact assumptions. Anyone with better assumptions should be able to follow the process.


Sign in / Sign up

Export Citation Format

Share Document