scholarly journals A Satellite-Based Assessment of Upper-Tropospheric Water Vapor Measurements during AFWEX

2009 ◽  
Vol 48 (11) ◽  
pp. 2284-2294 ◽  
Author(s):  
Eui-Seok Chung ◽  
Brian J. Soden

Abstract Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-μm brightness temperatures as a common benchmark during the Atmospheric Radiation Measurement Program (ARM) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX). To avoid uncertainties associated with the inversion of satellite-measured radiances into water vapor quantity, profiles of temperature and humidity observed from in situ, ground-based, and airborne instruments are inserted into a radiative transfer model to simulate the brightness temperature that the GOES-8 would have observed under those conditions (i.e., profile-to-radiance approach). Comparisons showed that Vaisala RS80-H radiosondes and Meteolabor Snow White chilled-mirror dewpoint hygrometers are systemically drier in the upper troposphere by ∼30%–40% relative to the GOES-8 measured upper-tropospheric humidity (UTH). By contrast, two ground-based Raman lidars (Cloud and Radiation Test Bed Raman lidar and scanning Raman lidar) and one airborne differential absorption lidar agree to within 10% of the GOES-8 measured UTH. These results indicate that upper-tropospheric water vapor can be monitored by these lidars and well-calibrated, stable geostationary satellites with an uncertainty of less than 10%, and that correction procedures are required to rectify the inherent deficiencies of humidity measurements in the upper troposphere from these radiosondes.

2016 ◽  
Vol 33 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
X. Zou ◽  
X. Zhuge ◽  
F. Weng

AbstractStarting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Advanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16 from the model simulations are first characterized and evaluated using both the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases at the water vapor channels may be associated with subtle differences in forward models.


2014 ◽  
Vol 7 (10) ◽  
pp. 10221-10248
Author(s):  
B. C. Kindel ◽  
P. Pilewskie ◽  
K. S. Schmidt ◽  
T. Thornberry ◽  
A. Rollins ◽  
...  

Abstract. Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA) is discussed.


2015 ◽  
Vol 8 (3) ◽  
pp. 1147-1156 ◽  
Author(s):  
B. C. Kindel ◽  
P. Pilewskie ◽  
K. S. Schmidt ◽  
T. Thornberry ◽  
A. Rollins ◽  
...  

Abstract. Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed.


2018 ◽  
Vol 56 (12) ◽  
pp. 7405-7414 ◽  
Author(s):  
Constantino Munoz-Porcar ◽  
Adolfo Comeron ◽  
Michael Sicard ◽  
Ruben Barragan ◽  
David Garcia-Vizcaino ◽  
...  

2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2016 ◽  
Author(s):  
Xavier Calbet ◽  
Niobe Peinado-Galan ◽  
Pilar Ripodas ◽  
Tim Trent ◽  
Ruud Dirksen ◽  
...  

Abstract. Radiosonde soundings from the GRUAN data record are shown to be consistent with IASI measured radiances via the LBLRTM radiative transfer model in the part of the spectrum that is mostly affected by water vapour absorption in the upper troposphere (from 700 hPa up). This result is key to have consistency between radiosonde and satellite measurements for climate data records, since GRUAN, IASI and LBLRTM constitute reference measurements in each of their fields. This is specially the case for night time radiosonde measurements. Although the sample size is small (16 cases), day time GRUAN radiosonde measurements seem to have a small dry bias of 2.5 % in absolute terms of relative humidity, located mainly in the upper troposphere, with respect to LBLRTM and IASI.


2009 ◽  
Vol 9 (19) ◽  
pp. 7397-7417 ◽  
Author(s):  
M. W. Shephard ◽  
S. A. Clough ◽  
V. H. Payne ◽  
W. L. Smith ◽  
S. Kireev ◽  
...  

Abstract. Presented here are comparisons between the Infrared Atmospheric Sounding instrument (IASI) and the "Line-By-Line Radiative Transfer Model" (LBLRTM). Spectral residuals from radiance closure studies during the IASI JAIVEx validation campaign provide insight into a number of spectroscopy issues relevant to remote sounding of temperature, water vapor and trace gases from IASI. In order to perform quality IASI trace gas retrievals, the temperature and water vapor fields must be retrieved as accurately as possible. In general, the residuals in the CO2 ν2 region are of the order of the IASI instrument noise. However, outstanding issues with the CO2 spectral regions remain. There is a large residual ~−1.7 K in the 667 cm−1 Q-branch, and residuals in the CO2 ν2 and N2O/CO2 ν3 spectral regions that sample the troposphere are inconsistent, with the N2O/CO2 ν3 region being too negative (warmer) by ~0.7 K. Residuals on this lower wavenumber side of the CO2 ν3 band will be improved by line parameter updates, while future efforts to reduce the residuals reaching ~−0.5 K on the higher wavenumber side of the CO2 ν3 band will focus on addressing limitations in the modeling of the CO2 line shape (line coupling and duration of collision) effects. Brightness temperature residuals from the radiance closure studies in the ν2 water vapor band have standard deviations of ~0.2–0.3 K with some large peak residuals reaching ±0.5–1.0 K. These are larger than the instrument noise indicating that systematic errors still remain. New H2O line intensities and positions have a significant impact on the retrieved water vapor, particularly in the upper troposphere where the water vapor retrievals are 10% drier when using line intensities compared with HITRAN 2004. In addition to O3, CH4, and CO, of the IASI instrument combined with an accurate forward model allows for the detection of minor species with weak atmospheric signatures in the nadir radiances, such as HNO3 and OCS.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1225
Author(s):  
Lanka Karthikeyan ◽  
Ming Pan ◽  
Dasika Nagesh Kumar ◽  
Eric F. Wood

Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.


Sign in / Sign up

Export Citation Format

Share Document