scholarly journals Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains

2009 ◽  
Vol 22 (22) ◽  
pp. 6047-6065 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Bohua Huang

Abstract The influence of the El Niño–Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO) interference on the dry and wet conditions in the Great Plains of the United States has been examined using monthly observational datasets. It is shown that both ENSO and PDO can generate a similar pattern of atmospheric and oceanic anomalies over the eastern part of the North Pacific and western North America that has significant impact on the climate over the Great Plains. Furthermore, the relationship between ENSO–PDO and climate anomalies in the Great Plains is intensified when ENSO and PDO are in phase (El Niño and warm PDO or La Niña and cold PDO). On average, anomalies over the Great Plains favor wet (dry) conditions when both ENSO and PDO are in the positive (negative) phase. However, when ENSO and PDO are out of phase, the relationship is weakened and the anomalies over the Great Plains tend toward neutral. Without ENSO, PDO alone does not affect the North American climate significantly. The relationship is quite robust for different seasons, with the strongest effects for the months of spring and the weakest effects for the months of autumn, whereas the months of winter and summer fall in between. The seasonality of the relationship may be associated with the seasonal dependence of the anomalies of general circulation and the pattern of mean seasonal cycle in the North Pacific. The contrasting impact of the interference of ENSO and PDO on the climate anomalies in the Great Plains is associated with differences in the ocean–atmosphere anomalies. When ENSO and PDO are in phase, the sea surface temperature (SST) anomalies extend from the equatorial Pacific to the higher latitudes of the North Pacific via the eastern ocean. The distribution of the corresponding anomalies of sea level pressure (SLP) and the wind at 1000 hPa form an ellipse with a southeast–northwest orientation of the long axis because the SST anomalies promote coherent changes in SLP in the central North Pacific. In the upper troposphere, a similar teleconnection pattern with the same sign generated by ENSO and PDO is overlapped and enhanced, which favors anomaly (dry and wet) conditions in the Great Plains. However, when ENSO and PDO are out of phase, the SST anomalies have the same sign in the tropical and central North Pacific, which is opposite to the anomalies near the west coast of North America. The anomalously cyclonic circulation over the North Pacific is weaker in the out-of-phase situation than in the in-phase situation. The distribution of the anomalies of SLP and the wind at 1000 hPa resembles a circle. Meanwhile, in the upper troposphere, ENSO and PDO generate a similar teleconnection pattern with opposite sign, causing cancellation of the anomalous circulation and favoring neutral climate in the Great Plains.

2020 ◽  
Vol 33 (16) ◽  
pp. 6833-6848
Author(s):  
Tingting Han ◽  
Minghua Zhang ◽  
Botao Zhou ◽  
Xin Hao ◽  
Shangfeng Li

AbstractThe relationship between the tropical west Pacific (TWP) and East Asian summer monsoon/precipitation has been documented in previous studies. However, the stability for the signals of midsummer precipitation in the TWP sea surface temperature (SST_TWP), which is important for climate variation, has drawn little attention. This study identifies a strengthened relationship between the leading empirical orthogonal function mode (EOF1) of midsummer precipitation over Northeast China (NEC) and the SST_TWP after the mid-1990s. The EOF1 mode shows a significant positive correlation with the SST_TWP for 1996–2016, whereas the relationship is statistically insignificant for 1961–90. Further results indicate that the North Pacific multidecadal oscillation (NPMO) shifts to a positive phase after the 1990s. In the positive NPMO phase, the anomalous circulation over the northeast Pacific expands westward over the central North Pacific–Aleutian Islands region. Concurrently, the SST_TWP-associated wavelike pattern propagates northeastward from the west Pacific to the northwest Pacific and farther to the North Pacific, facilitating the poleward expansion and intensification of the SST_TWP-related circulation anomalies over the North Pacific. Therefore, the SST_TWP has an enhanced influence on NEC precipitation through the modulation of the circulation anomalies over the central North Pacific–Aleutian Islands region after the mid-1990s. Additionally, the tropical anticyclone/cyclone associated with the SST_TWP expands westward to South China, exerting an intensified impact on meridional wind anomalies along eastern China and on moisture transport over NEC. These conditions jointly contribute to the strengthened relationship between the SST_TWP and the EOF1 mode of NEC midsummer precipitation after the mid-1990s.


2020 ◽  
Vol 20 (3) ◽  
pp. 11-18
Author(s):  
Hyeon-Cheol Lee ◽  
Young-Jun Cho ◽  
Byunghwan Lim ◽  
Seung-Bum Kim

In this study, weather patterns (WPs) associated with the heat wave in South Korea are objectively classified by applying <i>K</i>-means clustering analysis. The representative weather patterns that caused the heat wave were divided into three WPs, namely WP 1, WP 2, and WP 3. The heat wave over the Korean Peninsula was mainly related to the expansion of the North Pacific High (NPH). Moreover, we analyzed the relationship between casualties and WPs of the heat wave. In WP 1, the isobar of NPH was located in the southern part of South Korea. Most casualties (18 people) occurred in this region. In WP 2, NPH was distributed throughout South Korea, with nationwide casualties of 44 people. Moreover, the duration of the heat wave for WP 2 was the longest, at 4.5 days. WP 3 occurred mainly in June, when the NPH was not yet developed, presenting the smallest number of casualties.


2021 ◽  
pp. 1-53
Author(s):  
Hua Li ◽  
Shengping He ◽  
Ke Fan ◽  
Yong Liu ◽  
Xing Yuan

AbstractThe Meiyu withdrawal date (MWD) is a crucial indicator of flood/drought conditions over East Asia. It is characterized by a strong interannual variability, but its underlying mechanism remains unknown. We investigated the possible effects of the winter sea surface temperature (SST) in the North Pacific Ocean on the MWD on interannual to interdecadal timescales. Both our observations and model results suggest that the winter SST anomalies associated with the MWD are mainly contributed by a combination of the first two leading modes of the winter SST in the North Pacific, which have a horseshoe shape (the NPSST). The statistical results indicate that the intimate linkage between the NPSST and the MWD has intensified since the early 1990s. During the time period 1990–2016, the NPSST-related SST anomalies persisted from winter to the following seasons and affected the SST over the tropical Pacific in July. Subsequently, the SST anomalies throughout the North Pacific strengthened the southward migration of the East Asian jet stream (EAJS) and the southward and westward replacement of the western North Pacific subtropical high (WPSH), leading to an increase in Meiyu rainfall from July 1 to 20. More convincingly, the anomalous EAJS and WPSH induced by the SST anomalies can be reproduced well by numerical simulations. By contrast, the influence of the NPSST on the EASJ and WPSH were not clear between 1961 and 1985. This study further illustrates that the enhanced interannual variability of the NPSST may be attributed to the more persistent SST anomalies during the time period 1990–2016.


2016 ◽  
Vol 46 (9) ◽  
pp. 2807-2825 ◽  
Author(s):  
Changheng Chen ◽  
Igor Kamenkovich ◽  
Pavel Berloff

AbstractThis study explores the relationship between coherent eddies and zonally elongated striations. The investigation involves an analysis of two baroclinic quasigeostrophic models of a zonal and double-gyre flow and a set of altimetry sea level anomaly data in the North Pacific. Striations are defined by either spatiotemporal filtering or empirical orthogonal functions (EOFs), with both approaches leading to consistent results. Coherent eddies, identified here by the modified Okubo–Weiss parameter, tend to propagate along well-defined paths, thus forming “eddy trains” that coincide with striations. The striations and eddy trains tend to drift away from the intergyre boundary at the same speed in both the model and observations. The EOF analysis further confirms that these striations in model simulations and altimetry are not an artifact of temporal averaging of random, spatially uncorrelated vortices. This study suggests instead that eddies organize into eddy trains, which manifest themselves as striations in low-pass filtered data and EOF modes.


2020 ◽  
Vol 33 (24) ◽  
pp. 10671-10690
Author(s):  
Tianjiao Ma ◽  
Wen Chen ◽  
Hans-F. Graf ◽  
Shuoyi Ding ◽  
Peiqiang Xu ◽  
...  

AbstractThe present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.


2017 ◽  
Vol 30 (5) ◽  
pp. 1861-1880 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Raffaele Montuoro ◽  
Hisashi Nakamura ◽  
...  

Abstract Local and remote atmospheric responses to mesoscale SST anomalies associated with the oceanic front and eddies in the Kuroshio Extension region (KER) are studied using high- (27 km) and low-resolution (162 km) regional climate model simulations in the North Pacific. In the high-resolution simulations, removal of mesoscale SST anomalies in the KER leads to not only a local reduction in cyclogenesis but also a remote large-scale equivalent barotropic response with a southward shift of the downstream storm track and jet stream in the eastern North Pacific. In the low-resolution simulations, no such significant remote response is found when mesoscale SST anomalies are removed. The difference between the high- and low-resolution model simulated atmospheric responses is attributed to the effect of mesoscale SST variability on cyclogenesis through moist baroclinic instability. It is only when the model has sufficient resolution to resolve small-scale diabatic heating that the full effect of mesoscale SST forcing on the storm track can be correctly simulated.


2012 ◽  
Vol 25 (19) ◽  
pp. 6554-6566 ◽  
Author(s):  
Bolan Gan ◽  
Lixin Wu

Abstract In this study the modulation of ocean-to-atmosphere feedback over the North Pacific in early winter from global warming is investigated based on both the observations and multiple climate model simulations from a statistical perspective. It is demonstrated that the basin-scale atmospheric circulation displays an equivalent barotropic ridge in response to warm SST anomalies in the Kuroshio–Oyashio Extension (KOE) region. This warm SST–ridge response in early winter can be enhanced significantly by global warming, indicating a strengthening of air–sea coupling over the North Pacific. This enhancement is likely associated with the intensification of storm tracks and, in turn, the amplification of atmospheric transient eddy feedback in a warm climate, although the secular trend of enhanced storm-track activity over the North Pacific is suggested to be biased in reanalysis product.


Sign in / Sign up

Export Citation Format

Share Document